Math, asked by kazekushikillers, 19 days ago

Complete the missing parts of the missing process in estimating/approximating square roots up to the nearest hundredths.​

Attachments:

Answers

Answered by steffiaspinno
0

The nearest hundredths place  of \sqrt{12}   is 3.46

Explanation:

Step 1 of 5: The \sqrt{12}  lies between \sqrt{9} and \sqrt{16}

Step 2 of 5: Can be written as \sqrt{9}  < \sqrt{12} < \sqrt{16}

                                                 = 3 < \sqrt{12} < 4

Step 3 of 5: First estimation (Nearest Tenths)

                      (a)3.4                  (b)3.5

                       \sqrt{12} is in between 3.4 and 3.5 but closer to 3.4

Step 4 of 5: Further estimation (Nearest Hundredths)

                      (a)3.46                   (b)3.47

                       Since  \sqrt{12} is closer to \sqrt{16} than \sqrt{9}

                        then  \sqrt{12} ≅3.46

Step 5 of 5: therefore the approximated value of   \sqrt{12} into nearest     hundredths is 3.46

Similar questions