Math, asked by krishna318, 1 year ago

complete the question in copy with whole process

Attachments:

Answers

Answered by NIMISHGUPTA
0
i think this may help you
Attachments:

krishna318: good but light is dim
Answered by BloomingBud
2
Hello......... ^_^

Here is your answer......

simplify \:  \:  {[   \:  \sqrt[3]{ {x}^{4}y } \:  \times  \frac{1}{ \sqrt[3]{ {x {y}^{7} } } }    \:  \: ]}^{ - 4}  \\  \\  \\  =  >  {[  \:  \: \sqrt[3]{ \frac{ {x}^{4} y}{x {y}^{7} } }   \:  \: ] \:  \: }^ { - 4}  \\  \\  \\  =  >   {[ \:  \:  {( \frac{ {x}^{4}y }{x {y}^{7} } )}^{ \frac{1}{3} } \:  \:  ]}^{ - 4} \\  \\  \\  =  >  {[ \:  \: ( { \frac{ {x}^{4 - 1} }{ {y}^{7 - 1} } \: ) \: }^{ \frac{1}{3} }  \:  \:  \: ]}^{ - 4}  \\  \\  \\  =  >  {[ \:  \:  \frac{ {x}^{3} }{ {y}^{6} } \:  ]}^{ \frac{1}{3}  \times  - 4}  \\  \\  \\  =  >  { \: [  \: \frac{ {x}^{3} }{ {y}^{6} }  \:  \: ]}^{ \frac{ - 4}{3} }  \\  \\  \\  =  >  \frac{ {x}^{3 \times  \frac{ - 4}{3} } }{ {y}^{6 \times  \frac{ - 4}{3} } }  \\  \\  \\  =  >  \frac{ {x}^{ - 4} }{ {y}^{ - 8} }  \\  \\   \\ =  >  \frac{ {y}^{8} }{ {x}^{4} }


Hope it helps........... ^_^

krishna318: very ease to you as you answer the best and clearly
BloomingBud: ^_^
Similar questions