Math, asked by sweetdeepika2020, 4 months ago

complete the square :
4x*2 + 4 root 3x + 3 = 0
Pls answer me fast pls pls take the photo of the solution ​

Answers

Answered by Anonymous
45

Given :

  • 4x² + 4√3x + 3 = 0

Solution :

  • Method
  • Solve this question by quadratic formula

According to quadratic formula

→ D = b² - 4ac

  • a = 4
  • b = 4√3
  • c = 3

→ D = (4√3)² - 4 × 4 × 3

→ D = 16 × 3 - 48

→ D = 48 - 48

→ D = 0

Now,

→ x = - b ± √D/2a

Either

→ x = - 4√3 + 0/2 × 4

→ x = - 4√3/2 × 4

→ x = - √3/2

Or

→ x = - 4√3 - 0/2 × 4

→ x = -4√3/2 × 4

→ x = - √3/2

Focus Zone : Discriminant (D) is zero. It shows that the solutions of given equation are equal.

________________________________

  • Method

Splitting middle term

→ 4x² + 4√3x + 3 = 0

→ 4x² + 2√3x + 2√3x + 3 = 0

→ 2x(2x + √3) + √3(2x + √3) = 0

→ (2x + √3)(2x + √3) = 0

•°• x = -√3/2 and - √3/2

________________________________

Answered by VinCus
66

Required Answer:-

 \\  \hookrightarrow \tt \:  {4x}^{2}  +  \sqrt[4]{3x}  + 3 = 0

\bigstarBy splitting the middle term,

 \\  \hookrightarrow \tt \:  {4x}^{2}  +  \sqrt[2]{3x} +  \sqrt[2]{3x}   + 3 = 0

 \\  \hookrightarrow \tt \:2x \times  \left(2x +  \sqrt{3}  \right) +  \sqrt{3}  \times  \left(2x +  \sqrt{3}  \right) = 0

 \\  \hookrightarrow \tt\left(2x +  \sqrt{3}  \right) +  \left(2x +  \sqrt{3}  \right) = 0

 \\  \hookrightarrow \tt \: \left(2x +  \sqrt{3} \right) = 0

 \\  \hookrightarrow \tt \: 2x   =  \sqrt{ - 3}

 \\  \hookrightarrow \tt \: x   =   \frac{ \sqrt{ - 3} }{2}


opmaddy07: Splendid@!
Similar questions