Complete the table below and graph on the same coordinate plane. Then analyze the relationship between the graphs.
4. Given: y = 2x2 – 4x + 4
Domain
Range
Opening of the parabola
Vertex
Axis of Symmetry
x - intercept
y – intercept
Domain
Range
Opening of the parabola
Vertex
Axis of Symmetry
x - intercept
y – intercept
Domain
Range
Opening of the parabola
Vertex
Axis of Symmetry
x - intercept
y – intercept
Answers
Answer:
Solution:
y = - 2x²
Domain ∈ R
Range (-∞ , 0]
opening of parabola - Vertical Downward
Vertex = ( 0 , 0)
Axis of symmetry y axis ( x = 0)
x - intercept (0 , 0)
y intercept (0 , 0)
y = - x² + 4
Domain ∈ R
Range (-∞ , 4]
opening of parabola - Vertical Downward
Vertex = ( 0 , 4)
Axis of symmetry y axis ( x = 0)
x - intercept (-2 , 0) , ( 2 , 0)
y intercept (0 , 4)
y = (x+1)²
Domain ∈ R
Range [0 , ∞)
opening of parabola - Vertical upward
Vertex = ( -1 , 0)
Axis of symmetry x= -1 parallel to y axis
x - intercept (-1 , 0)
y intercept (0 , 1)
y = 2x² - 4x + 4 -= 2(x - 1)² + 2
Domain ∈ R
Range [2 , ∞)
opening of parabola - Vertical upward
Vertex = ( -1 , 2)
Axis of symmetry x= 1 parallel to y axis
x - intercept None
y intercept (0 , 4)
Step-by-step explanation: