Math, asked by Marinette10, 2 months ago

complete values of x satisfying |x+5|+|6-x|=11 is

A. (-6, 5)
B. (5, 6)
C. (-5, 6)
D. (-5, -6)

Please answer immediately with method.​

Answers

Answered by amitnrw
14

Given : |x+5|+|6-x|=11  

To Find :   Values of x satisfying

Solution :

|x+5|+|6-x|=11  

| x |  =  x   if  x ≥ 0

      = - x  if x  <  0

Case 1  :  x  >  6    =>  6  - x   <  0    and x + 5 >  0

=>  x  + 5  -  (6 - x)  = 11

=>  2x - 1  = 11

=> 2x = 12

=> x  =  6

Hence no solution for  x > 6

Case 2  : x  < - 5     => x + 5 <  0      6 - x > 0

Hence

-(x + 5)  + 6 - x  =  11

=> - 2x  + 1 = 11

=> x = - 5  

Hence no solution   for x < - 5

Case 3 :     -5 ≤ x  ≤ 6

x + 5 ≥ 0   ,  6 - x ≥  0

=>  x + 5  + 6 - x  =  11

=> 11  = 11

Satisfied for all values of x

Hence x   ∈ [-5 , 6]

Learn More:

If f(x) =||x|-1| graph of (x)

brainly.in/question/17509624

|x|+|x-1|+|x-2|+|x-3|=3k

brainly.in/question/17699726

Answered by pulakmath007
11

SOLUTION

TO CHOOSE THE CORRECT OPTION

Complete values of x satisfying

 \sf{ |x + 5| +  |6 - x|  = 11 }

A. [-6, 5]

B. [5, 6]

C. [-5, 6]

D. [-6, -5]

EVALUATION

Here the given equation is

 \sf{ |x + 5| +  |6 - x|  = 11 }

Here

| x + 5 | = 0 when x = - 5

| 6 - x | = 0 when x = 6

Case : 1

When x < - 5

 \sf{ |x + 5| +  |6 - x|   }

 \sf{ =  -  (x + 5)+  (6 - x)  }

 \sf{ =  -  x  -  5+  6 - x  }

 \sf{ = 1 -  2x }

Case : 2

When - 5 x 6

 \sf{ |x + 5| +  |6 - x|   }

 \sf{  = (x + 5) +  (6 - x)  }

 \sf{  = x + 5+  6 - x }

 \sf{  = 11}

Case : 3

When x > 6

 \sf{ |x + 5| +  |6 - x|   }

 \sf{ =  (x + 5) -   (6 - x)   }

 \sf{ =  x + 5-  6  +  x  }

 \sf{ = 2x - 1 }

Above three cases can rewritten as

\sf {} |x + 5| +  |6 - x|   = \begin{cases} &amp; \sf{ \:  \:  \:  \: 1 - 2x \:  \:  \:  \:   \:  \: \:  \:  \: when \: x  &lt;   - 5} \\   \\&amp; \sf{  \:  \:  \:  \:  \:  \:  \:  \:  \: 11 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:when \:  -5  \leqslant x \leqslant 6} \\  \\ &amp; \sf{  \:  \:  \:  \:  \: 2x - 1 \:  \:  \:  \:  \: \:  \:  \:  when \: x   &gt;  6}  \end{cases}\\ \\

 \sf{Hence  \:  \:   |x + 5| +  |6 - x|   = 11 \:  \: holds  \:  \: when \: x \in \:  [-5,6] }

FINAL ANSWER

Hence the correct option is C. [ - 5 , 6 ]

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Check whether the half plane x+2y ≥ 4 contains origin

https://brainly.in/question/33659939

2. Solve 3x<12=0 when x is a real number and natural number

https://brainly.in/question/13005861

Similar questions