completing the square
Attachments:
Answers
Answered by
3
Hey buddy!
Here is yr answer
_____________________________
Method l:
=> x² - (√3 + 1 )x +√3 = 0
=> x² - (√3 + 1)x + √3 × 1 = 0
It is in the form of-------
x² + (a+b)x + ab = (x+a) (x+b)
x = x, a = √3 , b = 1
bt there is minus (-)...
so,
=> (x-√3) (x-1) = 0
x = √3
x = 1
Method ll:
=> x² - (√3+1)x + √3 = 0
=> x² -√3x -1x + √3 = 0
=> x (x-√3) -1 (x-√3) = 0
=> (x-√3) (x-1)
x = √3
x = 1
Hope it hlpz....
Here is yr answer
_____________________________
Method l:
=> x² - (√3 + 1 )x +√3 = 0
=> x² - (√3 + 1)x + √3 × 1 = 0
It is in the form of-------
x² + (a+b)x + ab = (x+a) (x+b)
x = x, a = √3 , b = 1
bt there is minus (-)...
so,
=> (x-√3) (x-1) = 0
x = √3
x = 1
Method ll:
=> x² - (√3+1)x + √3 = 0
=> x² -√3x -1x + √3 = 0
=> x (x-√3) -1 (x-√3) = 0
=> (x-√3) (x-1)
x = √3
x = 1
Hope it hlpz....
Answered by
0
4x^2 + 4√3x +3 =0
(2x)^2 + 2X2xX√3 +(√3)^2-(√3)^2+3=0
(2x)^2 +2X2xX√3 + 3-3=0
[2x +√3]^2 = 0
(2x+√3)=0
x= -√3/2 &-√3/2
Use the same procedure for any other relatives equation
Similar questions