Math, asked by nandini896, 10 months ago

completing the square method 2x²+5x-3=0​

Answers

Answered by Anonymous
1

\huge\mathfrak\blue{Answer:}

Given:

  • We have been given a Quadratic Polynomial 2x² + 5x - 3 = 0

To Find:

  • We have to find the roots of Equation using completing the square method

Completing Square Method:

Completing Square Method is used to solve a Quadratic equation by changing the equation so that the left side is a perfect square

Solution:

Given a Quadratic Polynomial

\boxed{\sf{ 2 x^2 + 5x - 3 = 0}}

Converting coefficient of x² to 1 by divding both sides of by 2

\implies \sf{\dfrac{2}{2} x^2 + \dfrac{5}{2} x - \dfrac{3}{2} = \dfrac{0}{2}}

\implies \sf{x^2 + \dfrac{5}{2} x - \dfrac{3}{2} = 0}

Shifting all coefficients to left side of the Equation

\implies \sf{x^2 + \dfrac{5}{2} x = \dfrac{3}{2}}

Dividing the coefficient of x by 2

  • \sf{\dfrac{Coefficient \: of \: x}{2}}

  • \dfrac{5}{2} \times \dfrac{1}{2}

  • \dfrac{5}{4}

Adding ( 5/4 )² on Both sides of equation

\implies \sf{x^2 + \left ( \dfrac{5}{4} \right )^2 + \dfrac{5}{2} x = \dfrac{3}{2} +  \left ( \dfrac{5}{4} \right )^2}

\implies \sf{x^2 + \left ( \dfrac{5}{4} \right )^2 + 2 \times \dfrac{5}{4} \times x + = \dfrac{3}{2} + \dfrac{5}{4}}

Using the below identity in above equation

\boxed{\text{ ( a + b )² = a² + b² + 2ab }}

\implies \sf{\left ( x + \dfrac{5}{4} \right )^2 =  \dfrac{3}{2} + \dfrac{25}{16}}

Taking LCM on Right Hand side

\implies \sf{\left ( x + \dfrac{5}{4} \right )^2 =  \dfrac{3 \times 8 + 25}{16}}

\implies \sf{\left ( x + \dfrac{5}{4} \right )^2 =  \dfrac{24 + 25}{16}}

\implies \sf{\left ( x + \dfrac{5}{4} \right )^2 =  \dfrac{49}{16}}

Taking Square root on Both sides

\implies \sf{ x + \dfrac{5}{4} =  \sqrt{\dfrac{49}{16} \: }}

\implies \sf{ x + \dfrac{5}{4} = \pm \: \dfrac{7}{4}}

_____________________________

\odot \: Case 1 : Taking 7/4

\implies \sf{ x + \dfrac{5}{4} = \dfrac{7}{4}}

\implies \sf{ x = \dfrac{7}{4} - \dfrac{5}{4}}

\implies \sf{ x = \dfrac{2}{4}}

\implies \boxed{\sf{ x = \dfrac{1}{2}} }

\sf{ }

\odot \: Case 2 : Taking - 7/4

\implies \sf{ x + \dfrac{5}{4} = - \dfrac{7}{4}}

\implies \sf{ x = - \dfrac{7}{4} - \dfrac{5}{4} }

\implies \sf{ x = - \dfrac{12}{4} }

\implies \boxed{\sf{ x = - 3 }}

Roots of Equation are 1/2 and - 3

_________________________

\large\purple{\underline{\underline{\sf{Extra \: Information:}}}}

  • Roots of Equation are the value of x for which the value of given polynomial becomes zero
  • Method of Finding roots
  • Middle Term Splitting
  • Completing Square Method
  • Cross Multiplication Method
Similar questions