Math, asked by janudeva, 9 months ago

complex no .write in standard form a+ib (1/3+3i)^3

Answers

Answered by BrainlyConqueror0901
8

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{(a+\iota b)=\frac{-53}{27}-26\iota}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies Complex \: number=  (\frac{1}{3}   + 3 \iota)^{2}  \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Standard \: form(a +  \iota b) = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt: \implies a +  \iota b =   {(\frac{1}{3}  + 3 \iota)}^{3}  \\\\ \tt\circ\:(a+b)^{3}=a^{3}+b^{3}+3a^{2}b+3ab^{2}\\ \\ \tt: \implies a +  \iota b =   (\frac{1}{3})^{3}  +  {(3 \iota)}^{3}  + 3 \times  (\frac{1}{3})^{2}   \times 3 \iota + 3 \times  \frac{1}{3}  \times  { (3 \iota)}^{2}  \\  \\ \tt: \implies a +  \iota b =   \frac{1}{27}  + 27 \times  { \iota}^{3}  + 3 \times  \frac{1}{9}  \times  3 \iota + 3 \times  { \iota}^{2}  \\  \\ \tt: \implies a +  \iota b =   \frac{1}{27}  + 27 \times   - \iota +  \iota + 3 \times  - 1 \\  \\ \tt: \implies a +  \iota b =   \frac{1}{27}  - 27 \iota +  \iota - 3 \\  \\ \tt: \implies a +  \iota b =   \frac{1 - 54}{27}  - 26 \iota \\  \\  \green{\tt: \implies a +  \iota b =  \frac{ - 53}{27}  - 26 \iota}

Answered by Anonymous
3

Given ,

The complex number is (1/3 + 3i)³

We know that ,

The standard equation of complex number is a + ib

Thus ,

 \tt \implies {( \frac{1}{3} + 3i )}^{3}

 \tt \implies {( \frac{1}{3}) }^{2}  +  {(3i)}^{3}  + 3. {( \frac{1}{3} )}^{2} .3i + 3. \frac{1}{2}. {(3i)}^{2}

 \tt \implies  \frac{1}{27}  + 27 {(i)}^{3}  +  \frac{9}{9}i + 9 {(i)}^{2}

 \tt \implies  \frac{1}{27}  + 27( - i) + i + 9( - 1)

 \tt \implies  \frac{1}{27}  - 27i + i - 9

 \tt \implies ( \frac{1}{27}   - 9) + i( - 27 + 1)

 \tt \implies  -  \frac{242}{27}  - 26i

Remmember :

 \tt \mapsto (a + b)³ = (a)³ + (b)³ + 3(a)²b + 3a(b)²

 \tt \mapsto (i)² = -1

 \tt \mapsto (i)³ = -(i)

Similar questions