Math, asked by elisageorge49, 25 days ago

complex number please do answer​

Attachments:

Answers

Answered by MysticSohamS
0

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

so \: here \\  \\  \frac{ -  \sqrt{7}  - i \sqrt{3} }{ \sqrt{7} - i \sqrt{3}  }  +  \frac{28 + i \sqrt{2} }{ \sqrt{7}  - i \sqrt{ 3} }  \\  \\  =  \frac{ -  \sqrt{7}  - i \sqrt{3}  \:  +2 \sqrt{7} + i \sqrt{2}   }{ \sqrt{7}  - i \sqrt{3} }  \\  \\  =  \frac{i \sqrt{2}  - i \sqrt{3}  +  \sqrt{7} }{ \sqrt{7} - i \sqrt{3}  }  \\  \\ so \:  \: conjugate \: of \:  \sqrt{7}  - i \sqrt{3}  \:  \: is \\  \sqrt{7}  + i \sqrt{3}  \\   \\ thus \: then \\ rationalising \: denominator \\  \\  \frac{i \sqrt{2}  - i \sqrt{3}   +  \sqrt{7} }{ \sqrt{7} - i \sqrt{3}  }  \:  \times  \:   \frac{ \sqrt{7}  + i \sqrt{3} }{ \sqrt{7} + i \sqrt{3}  }  \\  \\  =  \frac{(i \sqrt{2}  - i \sqrt{3}  +  \sqrt{7} )( \sqrt{7}  + i \sqrt{3}  \: )}{( \sqrt{7} ) {}^{2}  - (i \sqrt{3}) {}^{2}  }  \\  \\ \\   =  \frac{ \sqrt{14}i -  \sqrt{21} \: i + 7 +  \sqrt{6}  i {}^{2}   - 3i {}^{2}  +  \sqrt{21}i }{7  - 3i {}^{2} }  \\  \\  \\  =  \frac{ \sqrt{14i}  + 7 - 3( - 1) +  \sqrt{6} ( - 1)}{7 - 3( - 1)}  \\  \\  =  \frac{ \sqrt{14}i + (7 + 3) -  \sqrt{6}  }{7 + 3}  \\  \\  =  \frac{ \sqrt{14} i + 10 -  \sqrt{6} }{10}  \\  \\ a + ib \:  =  \frac{ \sqrt{14}i }{10}  \:  -  \:  \frac{10 -  \sqrt{6} }{10}  \\  \\ equating \: real \: and \: imaginary \: parts \\ we \: get \: then \\  \\ a = -  ( \frac{10 -  \sqrt{6} }{10}  \: ) \\  \\ b =  \frac{ \sqrt{14} }{10}

Similar questions