Math, asked by vermakartik987332, 1 year ago

Complex numbers class 11
Please help
I have solved till last step but the answer is not correct
The answer is (b) option ​

Attachments:

Answers

Answered by MaheswariS
1

Answer:

\sqrt{abcd}+\frac{1}{\sqrt{abcd}}=2\:cos(\alpha+\beta+\gamma+\delta)

option (B) is correct

Step-by-step explanation:

\text{Given:}\\

a=cos2\alpha+i\:sin2\alpha=e^{i2\alpha}\\

b=cos2\beta+i\:sin2\beta=e^{i2\beta}\\

c=cos2\gamma+i\:sin2\gamma=e^{i2\gama}\\

d=cos2\delta+i\:sin2\delta=e^{i2\delta}\\

Now,

abcd=e^{i2\alpha}e^{i2\beta}e^{i2\gamma}e^{i2\delta}

\implies\:abcd=e^{i2(\alpha+\beta+\gamma+\delta)}

\implies\:abcd=cos\:2(\alpha+\beta+\gamma+\delta)+i\:sin\:\:2(\alpha+\beta+\gamma+\delta)

\implies\:\sqrt{abcd}=[cos\:2(\alpha+\beta+\gamma+\delta)+i\:sin\:\:2(\alpha+\beta+\gamma+\delta)]^{1/2}

using Demovire's theorem

\boxed{(cos\theta+i\:sin\theta)^n=cos\:n\theta+i\:sin\:n\theta}

\sqrt{abcd}=[cos\:2\times\frac{1}{2}(\alpha+\beta+\gamma+\delta)+i\:sin\:2\timesfrac{1}{2}(\alpha+\beta+\gamma+\delta)]

\implies\:\sqrt{abcd}=cos(\alpha+\beta+\gamma+\delta)+i\:sin(\alpha+\beta+\gamma+\delta)..............(1)

\frac{1}{\sqrt{abcd}}=\frac{1}{e^{i(\alpha+\beta+\gamma+\delta)}}

\frac{1}{\sqrt{abcd}}=e^{-i(\alpha+\beta+\gamma+\delta)}

\frac{1}{\sqrt{abcd}}=cos(\alpha+\beta+\gamma+\delta)-i\:sin(\alpha+\beta+\gamma+\delta)............(2)

Adding (1) and (2), we get

\sqrt{abcd}+\frac{1}{\sqrt{abcd}}=cos(\alpha+\beta+\gamma+\delta)+i\:sin(\alpha+\beta+\gamma+\delta)+cos(\alpha+\beta+\gamma+\delta)-i\:sin(\alpha+\beta+\gamma+\delta)

\sqrt{abcd}+\frac{1}{\sqrt{abcd}}=cos(\alpha+\beta+\gamma+\delta)++cos(\alpha+\beta+\gamma+\delta)

\therefore\boxed{\bf{\sqrt{abcd}+\frac{1}{\sqrt{abcd}}=2\:cos(\alpha+\beta+\gamma+\delta)}}

Similar questions