Math, asked by PranayLadhe, 8 months ago

composite function of derivative find y= e^2x•tan3x​

Answers

Answered by Anonymous
52

{\underline{\sf{Question}}}

Function:

 \sf \: y = e {}^{2x}  \times  \tan3x

{\underline{\sf{To\:Find}}}

Derivative of given function

{\underline{\sf{Theory}}}

{\red{\boxed{\large{\bold{Composite\: Function (Chain\:Rule)}}}}}

Let y=f(t) ,t = g(u) and u =m(x) ,then

\sf\:\dfrac{dy}{dx}  =  \dfrac{dy}{dt}  \times  \dfrac{dt}{du}  \times  \dfrac{du}{dx}

{\underline{\sf{Solution}}}

 \sf \: y =  {e}^{2x}  \times  \tan3x

Differentiate with respect to x , by chain rule .

 \sf \implies \dfrac{dy}{dx}  = [e {}^{2x}  \times  \dfrac{d ( \tan3x)}{d(3x)} \times  \dfrac{d(3x)}{dx}  + \tan3x \times \dfrac{d( {e}^{2x} )}{d(2x)}   \times  \dfrac{d(2x)}{dx} ]

 \sf \implies \dfrac{dy}{dx}  = [  {e}^{2x} \times3 \times  \sec {}^{2}3x +  \tan3x  \times 2 \times  {e}^{2x}    ]

 \sf \implies \dfrac{dy}{dx}  = [  3{e}^{2x}   \sec {}^{2}3x +  2\tan3x   {e}^{2x}    ]

It is the required solution!

\rule{200}2

{\underline{\sf{Formula's}}}

1)\sf\:\frac{d(x {}^{n} )}{dx}  = nx {}^{n - 1}

2)\sf\:\frac{d(constant)}{dx}  = 0

3) \sf\dfrac{d( \tan \: x)}{dx} =   \sec{}^{2}\: x

 \sf4)  \dfrac{d(e {}^{x}) }{dx}  =  {e}^{x}

Similar questions