Math, asked by sv9286540250, 5 hours ago

compou o find the compound interest on 210,000 for 12 months at 10% per annum, if the interest is compounded () annually. (i) half yearly, (ii) quarterly ​

Answers

Answered by Atlas99
44

Solution

Principal(P) = ₹2,10,000

Time(n) = 12months = 1year

Rate(R) = 10% p.a.

1. Annually

 \bf{A=P\bigg(1+ \dfrac{R}{100}\bigg)^n}

 \sf{ = 210000 \bigg(1+\dfrac{10}{100} \bigg)^{1}}

\sf{ = 210000\bigg(\dfrac{11}{10} \bigg)}

\sf{ = 210000 \times\dfrac{11}{10}}

\sf{=₹2,31,000}

CI = Amount - Original Principal

CI = 231000 - 210000

Compound Interest = ₹21000.

 \rule{200pt}{1pt}

2. Half - yearly

 \bf{A=P\bigg(1+ \dfrac{R}{200}\bigg)^{2n}}

\sf{ = 210000 \bigg(1+\dfrac{10}{200}\bigg)^{2 \times 1 = 2} }

\sf{ = 210000 \times\dfrac{21}{20} \times\dfrac{21}{20}}

\sf{=210000 \times \dfrac{441}{400} }

\sf{=₹2,31,525}

CI = Amount - Original Principal

CI = 231525 - 210000

Compound Interest = ₹21,525.

 \rule{200pt}{1pt}

3. Quarterly

\bf{A=P\bigg(1+\dfrac{R}{400}\bigg)^{4n}}

\sf{ = 210000 \bigg(1+\dfrac{10}{400}\bigg)^{4 \times 1 = 4} }

\sf{ = 210000 \bigg(\dfrac{41}{40} \bigg)^{4} }

\sf{ = 210000 \times  \frac{41}{40} \times  \frac{41}{40} \times  \frac{41}{40} \times  \frac{41}{40}} \\

\sf{ = 210000 \times  \dfrac{2825761}{2560000} }

\sf{ =₹2,31,800.707}

CI = Amount - Original Principal

CI = 231800.707 - 210000

Compound Interest = ₹21,800.707

 \underline{\rule{200pt}{4pt}}

Answered by SANDHIVA1974
2

Step-by-step explanation:

solution </p><p>Principal(P) = ₹2,10,000</p><p>Time(n) = 12months = 1year</p><p>Rate(R) = 10% p.a.</p><p></p><p>1. Annually</p><p></p><p>[tex] \bf{A=P\bigg(1+ \dfrac{R}{100}\bigg)^n}

 \sf{ = 210000 \bigg(1+\dfrac{10}{100} \bigg)^{1}}

\sf{ = 210000\bigg(\dfrac{11}{10} \bigg)}

\sf{ = 210000 \times\dfrac{11}{10}}

\sf{=₹2,31,000}

CI = Amount - Original Principal

CI = 231000 - 210000

Compound Interest = ₹21000.

 \rule{200pt}{1pt}

2. Half - yearly

 \bf{A=P\bigg(1+ \dfrac{R}{200}\bigg)^{2n}}

\sf{ = 210000 \bigg(1+\dfrac{10}{200}\bigg)^{2 \times 1 = 2} }

\sf{ = 210000 \times\dfrac{21}{20} \times\dfrac{21}{20}}

\sf{=210000 \times \dfrac{441}{400} }

\sf{=₹2,31,525}

CI = Amount - Original Principal

CI = 231525 - 210000

Compound Interest = ₹21,525.

 \rule{200pt}{1pt}

3. Quarterly

\bf{A=P\bigg(1+\dfrac{R}{400}\bigg)^{4n}}

\sf{ = 210000 \bigg(1+\dfrac{10}{400}\bigg)^{4 \times 1 = 4} }

\sf{ = 210000 \bigg(\dfrac{41}{40} \bigg)^{4} }

\sf{ = 210000 \times  \frac{41}{40} \times  \frac{41}{40} \times  \frac{41}{40} \times  \frac{41}{40}} \\

\sf{ = 210000 \times  \dfrac{2825761}{2560000} }

\sf{ =₹2,31,800.707}

CI = Amount - Original Principal

CI = 231800.707 - 210000

Compound Interest = ₹21,800.707

[ \underline{\rule{200pt}{4pt}}[/tex]

Similar questions