Math, asked by sarveshtare13, 7 months ago

compound interest for a certain amount at 13%p.a for 2 years exceeds the interest on the same amount at 12%p.a for two years by Rs 225. The principal amount is?​

Answers

Answered by jmanaswi8659
37

Answer:

  • Therefore, 3200=P(1+
  • 100
  • 10
  • )
  • 2
  • −P
  • ⇒3200=P(1.1)
  • 2
  • −P
  • ⇒1320=1.21P−P
  • ⇒P=
  • 0.21
  • 3200
  • ⇒P= Rs. 15238
  • Simple interest =
  • 100
  • PRT
  • ⇒12000=
  • 100
  • P×10×2
  • ⇒P=
  • 20
  • 1000×100
  • ⇒P= Rs. 60,000
  • Sum of the principal =15238+60000= Rs. 75238

Answers is 75238

Answered by sangram0111
23

Given:

Compound interest for a certain amount at 13%p.a for 2 years exceeds the interest on the same amount at 12%p.a for two years by Rs 225.

Solution:

Know that,

\[A = P{\left( {1 + \frac{r}{{100}}} \right)^n}\]

Write the following equation using given information,

\[ \Rightarrow P{\left( {1 + \frac{{13}}{{100}}} \right)^2} - P{\left( {1 + \frac{{12}}{{100}}} \right)^2} = 225\]

\[ \Rightarrow P\left\{ {{{\left( {\frac{{113}}{{100}}} \right)}^2} - {{\left( {\frac{{111}}{{100}}} \right)}^2}} \right\} = 225\]

Apply, \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]

\[ \Rightarrow P\left\{ {\left( {\frac{{113 + 112}}{{100}}} \right)\left( {\frac{{113 - 112}}{{100}}} \right)} \right\} = 225\]

\[\begin{array}{l} \Rightarrow P \times 225 \times 1 = 225 \times 100 \times 100\\ \Rightarrow P = 10,000\end{array}\]

Hence the principal is Rs. 10000.

Similar questions