Math, asked by ABHIJITHSLAYAN, 6 months ago

Compute 1/(√3 -1) correct to two decimal places(√3≈1.73)​

Answers

Answered by Harshikesh16726
1

Answer:

3x+2y = 183x+2y = 183x+2y = 183x+2y = 183x+2y = 183x+2y = 18Given equations are

2x+3y=11−−−−(1)

2x−4y=−24−−−−(2)

Form (1)

2x+3y=11

⇒2x=11−3y

⇒x=

2

11−3y

−−−(3)

substituting x in(2)

2x−4y=−24

⇒2(

2

11−3y

)−4y=−24

⇒11−3y−4y=−24

⇒11−7y=−24

⇒7y=35

⇒y=35/7

⇒y=5.

putting y = 5 in (3)

x=

2

11−3(5)

⇒x=

2

11−15

⇒x=−4/2

∴x=−2.

Hence x = -2 and y = 5 is the solution of the

equation.

Now, we have to find m

y=mx+3 ∴m=−1

5=3(−2)+3

5−3=−2m⇒−2m=2

⇒m=−2/x=−1Given equations are

2x+3y=11−−−−(1)

2x−4y=−24−−−−(2)

Form (1)

2x+3y=11

⇒2x=11−3y

⇒x=

2

11−3y

−−−(3)

substituting x in(2)

2x−4y=−24

⇒2(

2

11−3y

)−4y=−24

⇒11−3y−4y=−24

⇒11−7y=−24

⇒7y=35

⇒y=35/7

⇒y=5.

putting y = 5 in (3)

x=

2

11−3(5)

⇒x=

2

11−15

⇒x=−4/2

∴x=−2.

Hence x = -2 and y = 5 is the solution of the

equation.

Now, we have to find m

y=mx+3 ∴m=−1

5=3(−2)+3

5−3=−2m⇒−2m=2

⇒m=−2/x=−1Given equations are

2x+3y=11−−−−(1)

2x−4y=−24−−−−(2)

Form (1)

2x+3y=11

⇒2x=11−3y

⇒x=

2

11−3y

−−−(3)

substituting x in(2)

2x−4y=−24

⇒2(

2

11−3y

)−4y=−24

⇒11−3y−4y=−24

⇒11−7y=−24

⇒7y=35

⇒y=35/7

⇒y=5.

putting y = 5 in (3)

x=

2

11−3(5)

⇒x=

2

11−15

⇒x=−4/2

∴x=−2.

Hence x = -2 and y = 5 is the solution of the

equation.

Now, we have to find m

y=mx+3 ∴m=−1

5=3(−2)+3

5−3=−2m⇒−2m=2

⇒m=−2/x=−1Given equations are

2x+3y=11−−−−(1)

2x−4y=−24−−−−(2)

Form (1)

2x+3y=11

⇒2x=11−3y

⇒x=

2

11−3y

−−−(3)

substituting x in(2)

2x−4y=−24

⇒2(

2

11−3y

)−4y=−24

⇒11−3y−4y=−24

⇒11−7y=−24

⇒7y=35

⇒y=35/7

⇒y=5.

putting y = 5 in (3)

x=

2

11−3(5)

⇒x=

2

11−15

⇒x=−4/2

∴x=−2.

Hence x = -2 and y = 5 is the solution of the

equation.

Now, we have to find m

y=mx+3 ∴m=−1

5=3(−2)+3

5−3=−2m⇒−2m=2

⇒m=−2/x=−1Given equations are

2x+3y=11−−−−(1)

2x−4y=−24−−−−(2)

Form (1)

2x+3y=11

⇒2x=11−3y

⇒x=

2

11−3y

−−−(3)

substituting x in(2)

2x−4y=−24

⇒2(

2

11−3y

)−4y=−24

⇒11−3y−4y=−24

⇒11−7y=−24

⇒7y=35

⇒y=35/7

⇒y=5.

putting y = 5 in (3)

x=

2

11−3(5)

⇒x=

2

11−15

⇒x=−4/2

∴x=−2.

Hence x = -2 and y = 5 is the solution of the

equation.

Now, we have to find m

y=mx+3 ∴m=−1

5=3(−2)+3

5−3=−2m⇒−2m=2

⇒m=−2/x=−1Given equations are

2x+3y=11−−−−(1)

2x−4y=−24−−−−(2)

Form (1)

2x+3y=11

⇒2x=11−3y

⇒x=

2

11−3y

−−−(3)

substituting x in(2)

2x−4y=−24

⇒2(

2

11−3y

)−4y=−24

⇒11−3y−4y=−24

⇒11−7y=−24

⇒7y=35

⇒y=35/7

⇒y=5.

putting y = 5 in (3)

x=

2

11−3(5)

⇒x=

2

11−15

⇒x=−4/2

∴x=−2.

Hence x = -2 and y = 5 is the solution of the

equation.

Now, we have to find m

y=mx+3 ∴m=−1

5=3(−2)+3

5−3=−2m⇒−2m=2

⇒m=−2/x=−1=

n

∑x

2

−(

n

∑x

)

2

=

10

1530

−(12)

2

=

153−144

=

9

=3

Coefficient of variation =

x

σ

×100

=

12

3

×100

=

4

1

×100

=25

Answered by meenudhiman709
0

Answer:

1•73 has place of decimal

Similar questions