compute coefficient of mean deviation from am for the following series c.l : 0-10,10-20,20-30,30-40,40-50 and f : 6,28,51,11,4
Answers
Answer:
28.69
Step-by-step explanation:
Given compute coefficient of mean deviation from the following series c.l : 0-10,10-20,20-30,30-40,40-50 and f : 6,28,51,11,4
C. I Midpoint(Xi) f(i) f (Xi)
0--10 5 6 30
10--20 15 28 420
20---30 25 51 1275
30---40 35 11 385
40---50 45 4 180
----------- ---------------
∑ fi = N = 100 ∑ f(xi) = 2290
A = 2290 / 100 = 22.9 = Arithmetic mean
Now we need to find mean deviation
Xi Xi - A fi fi mod xi - A
5 17.9 6 107.4
15 7.9 28 221.2
25 2.1 51 107.1
35 12.1 11 133.1
45 22.1 4 88.4
----------------
∑ fi mod Xi - A = 657.2
Now mean deviation is given by fi mod Xi - A / N
657 . 2 / 100
Mean deviation = 6.572
To find coefficient of mean deviation = M.D / A x 100
= 6.572 / 22.9 x 100
= 28.69 %