Math, asked by AditiPandit78, 2 months ago

compute cos 195° from the functions of 150° and 45°​

Answers

Answered by dbthakkar231979
4

Step-by-step explanation:

I hope it helpful for you completely

Attachments:
Answered by itzgeniusgirl
38

\red\bigstar \sf \: Question  :  -  \\

compute cos 195° from the functions of 150° and 45°

 \red \bigstar \sf \: solution :  -  \\

 \implies\sf \: cos \: 195 \degree \\  \\ \implies\sf \: cos(150 \degree \:  + 45 \degree ) \\  \\\implies\sf \: cos \: 150 \degree \: cos \: 45 \degree \:  - sin150 \degree \: sin \: 45 \degree \:  \\  \\

 \sf \: (cos(a + b) = cosa - cos \: b - sin \: a \:  - sin \: b ) \\  \\

\implies\sf \: cos150 \degree \:  \times  \frac{1}{ \sqrt{2}}  - sin150 \degree \:  \times  \frac{1}{ \sqrt{2 }}  \\  \\ \implies\sf \:  \frac{1}{ \sqrt{2}} cos \: (180 \degree - 30 \degree) -  \frac{1}{ \sqrt{2} } sin (180 \degree - 30 \degree) \\  \\  \implies\sf \:  \frac{1}{ \sqrt{2}} ( - cos30 \degree) -  \frac{1}{ \sqrt{2} } sin30 \degree \:  \\  \\

 \sf \: cos(180 \degree - 0) =  - cos0 \\  \\

\implies\sf \: sin \: (180 \degree - 0) = sin0 \\  \\ \implies\sf \:  \frac{ - 1}{ \sqrt{2}}  \times  \frac{ \sqrt{3} }{2}  -  \frac{1}{ \sqrt{2} }  \times  \frac{1}{2}  \\  \\  \implies\sf \:  \frac{ - ( \sqrt{3 }  + 1)}{2 \sqrt{2} }  \\  \\ \implies\sf \: ( \frac{ \sqrt{6 + 2} }{4}) \\  \\

hence proved

____________________________

Similar questions