Math, asked by iamkushagraagrawal, 1 month ago

compute
cosec(13pie/12)

Answers

Answered by 2dots
1

Answer:

- \sqrt{2} (\sqrt{3}  +1)

Step-by-step explanation:

 [cosec(\frac{13\pi }{12}) \\= cosec (\pi  + \frac{\pi }{12})\\= - cosec \frac{\pi}{12} \\\\= - cosec \ 15\°\\= - \sqrt{1 + cot^{2} \ 15\° }  \\= - \sqrt{1 + (2 + \sqrt{3} )^{2} }  \ \ \  Since \ cot\ 15\° = 2 + \sqrt{3}  \\  = - \sqrt{1 + 4 + 3 + 4\sqrt{3} } \\= - \sqrt{8 + 4\sqrt{3} } \\= - \sqrt{8 + 2\sqrt{12} } \\= - \sqrt{6 + 2 + 2\sqrt{6}\sqrt{2}   } \\= - \sqrt{ (\sqrt{6} + \sqrt{2} )^{2}  } \\\\= - (\sqrt{6} + \sqrt{2}) \\\\= -\sqrt{6} - \sqrt{2}\\= -\sqrt{2} (\sqrt{3} + 1)

Similar questions