Math, asked by tavneet292, 3 months ago

Compute f(x+h)-f(x)/h and then Lim h _ 0 f(x+h)-f(x)/h for the following questions F(x)=7x+12 f(x)=x^3
f(x)=5x^2-2x+4

Answers

Answered by Anonymous
23

 \large \bf { \underline{\underline{ {1}^{st}   \:  \: part : }}}

Compute First law of derivative :

  • Before getting into derivation let's understand what derivative actually mean. In a single word it's the slope. When secant line gradually approaches tangent line it's called derivative of that particular point.

Derivation :

Let, x is a point where we need to find the derivative of this function. In other word, we have to find out the slope on ( x , f( x ) ) in the graph.

We have taken a pt right from x at the distance h; ( x + h ).And AB is secant line which is gradually approaching tangent line. Means h approaches 0.

Slope will be {f( x + h ) - f( x )}/( x + h ) - x =>{f( x + h ) - f( x )}/h

Similarly when secant line gradually approaches tangent line from left it will be {f( x - h ) - f( x )}/(-h)

No doubt it's for secant line, but when we are taking about tangent line it will be

 \sf \lim_{∆x \to \: 0} \frac{∆f(x)}{∆x}  \\  \\   =  { \underline{ \boxed{\bf{\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} }}}} \\  \\  \\  \\

 \large \bf { \underline{\underline{ {2}^{nd}   \:  \: part : }}}

 \:  \bull  \:  \:  \:  \:   \sf \: f( x ) = 7x+12

 \mapsto \:    \:  \sf \:  {f}^{'} ( x ) = \lim_{x\to 0 }\frac{ 7(x + h)+12  - (7x   +  12)}{h} \\

 \mapsto \:    \:  \sf \:  {f}^{'} ( x ) = \lim_{x\to 0 }\frac{  \cancel{7x }+7 h  +  \cancel{12}  - \cancel{ 7x } -  \cancel{ 12}}{h} \\

 \mapsto \:    \:  \sf \:  {f}^{'} ( x ) = \lim_{x\to 0 }\frac{  7  \cancel{h }}{ \cancel{h}} \\

 \mapsto \:    \:  \bf \:  {f}^{'} ( x ) = 7 \\  \\  \\  \\

 \:  \bull  \:  \:  \:  \:   \sf \: g(x) =  {x}^{3}

 \mapsto  \:  \:   \sf \:  {g}^{'} (x) =   \lim_{x\to 0 }\frac{{(x + h)}^{3}  -  {x}^{3} }{h} \\

 \mapsto  \:  \:   \sf \:  {g}^{'} (x) =   \lim_{x\to 0 }\frac{ {(x + h - x)}^{3}  - 3x(x + h)({x} + h -  {x}) }{h} \\

 \mapsto  \:  \:   \sf \:  {g}^{'} (x) =   \lim_{x\to 0 }\frac{ {( \cancel{x} + h - \cancel{ x})}^{3}  - 3x(x + h) ( \cancel{x} + h -  \cancel{x})}{h} \\

\mapsto  \:  \:   \sf \:  {g}^{'} (x) =  \lim_{x\to 0 }\frac{ h\big \{ {h}^{2} - 3x(x + h)  \big \}}{h}  \\

\mapsto  \:  \:   \bf \:  {g}^{'} (x) =  - 3 {x}^{2}  \\  \\  \\

 \:  \bull  \:  \:  \:  \:   \sf \: z(x)=5x^2-2x+4

 \mapsto \sf \:  \:  {z}^{'} (x) = \lim_{x\to 0 } \frac{5{(x + h) }^{2} - 2(x + h) + 4 -  \{5 {x}^{2} - 2x + 4 \}  }{h}  \\

\mapsto \sf \:  \:  {z}^{'} (x) = \lim_{x\to 0 } \frac{5 {x}^{2} +2xh +  {h}^{2} - 2x - 2h + 4 - 5 {x}^{2}  +  2x  - 4   }{h}  \\

\mapsto \sf \:  \:  {z}^{'} (x) = \lim_{x\to 0 } \frac{ {h}^{2} +  2xh - 2h}{h}  \\

\mapsto \sf \:  \:  {z}^{'} (x) = \lim_{x\to 0 }(h + 2x - 2) \\

\mapsto \bf \:  \:  {z}^{'} (x) = 2x - 2

Attachments:
Similar questions