Math, asked by ivanjamesespedido, 5 months ago

Compute for the derivative of the function below for x = 1. y=35–√x+6x2−23x3+8

Answers

Answered by pulakmath007
1

SOLUTION

TO DETERMINE

The derivative of the below function for x = 1

 \sf{y = 35 -  \sqrt{x}  + 6 {x}^{2}  - 23 {x}^{3} + 8 }

EVALUATION

Here the given function is

 \sf{y = 35 -  \sqrt{x}  + 6 {x}^{2}  - 23 {x}^{3} + 8 }

 \displaystyle \:  \sf{ \implies \: y = 43 -  {x}^{ \frac{1}{2} }   + 6 {x}^{2}  - 23 {x}^{3}  }

Differentiating both sides with respect to x we get

 \displaystyle \:  \sf{  \:  \frac{dy}{dx}  = 0 -   \frac{1}{2}  {x}^{ \frac{1}{2}  - 1}   + 6 \times 2  {x}^{2 - 1}  - 23 \times 3 {x}^{3 - 1}  }

 \displaystyle \:  \sf{ \implies \:  \frac{dy}{dx}  =  -   \frac{1}{2}  {x}^{  - \frac{1}{2}  }  +   12x - 69 {x}^{2}  }

Now for x = 1 we have

 \displaystyle \:  \sf{ \implies \:  \frac{dy}{dx} \bigg| _{x = 1} =  -   \frac{1}{2}  {(1)}^{  - \frac{1}{2}  }  +   12 \times 1 -  69  \times {(1)}^{2}  }

 \displaystyle \:  \sf{ \implies \:  \frac{dy}{dx} \bigg| _{x = 1} =  -   \frac{1}{2}  +   12 -  69 }

 \displaystyle \:  \sf{ \implies \:  \frac{dy}{dx} \bigg| _{x = 1} =  -  57 \frac{1}{2} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=4t/1+t^2, y=3(1-t^2) /(1+t^2), then show that dy/dx=-9x/4y

https://brainly.in/question/18233961

2. find integration of e2x-epower -2x / e2x +epower-2x dx

https://brainly.in/question/31921167

Similar questions