Math, asked by ravishannam, 22 hours ago

compute limit x tends to "-infinity" 2x²-x+3/x²-2x+5​

Answers

Answered by dakshsigroha12
1

Answer:

JUST APPLY L. HOSPITAL RULE TILL YOU GET YOUR ANSWER IN CASE OF 0 BY 0 AND INFINITY♾️ BY INFINITY♾️

Attachments:
Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given expression is

 \purple{\rm :\longmapsto\:\displaystyle\lim_{x \to  -  \infty }\rm  \frac{ {2x}^{2}  - x + 3}{ {x}^{2}  - 2x + 5}}

To evaluate this limit, we use Method of Substitution

So, Substitute

 \purple{\rm :\longmapsto\:x =  - y}

 \purple{\rm :\longmapsto\:as \: x \:  \to \:  -  \infty , \: so \: y \:  \to \:  \infty }

So, above expression can be rewritten as

\rm \:  =  \:\displaystyle\lim_{y \to   \infty }\rm  \frac{ {2( - y)}^{2}  - ( - y)+ 3}{ {( - y)}^{2}  - 2( - y)+ 5}

\rm \:  =  \:\displaystyle\lim_{y \to   \infty }\rm  \frac{2 {y}^{2}  + y+ 3}{ {y}^{2} + 2y+ 5}

\rm \:  =  \:\displaystyle\lim_{y \to   \infty }\rm  \frac{ {y}^{2} \bigg[2+  \dfrac{1}{y} +  \dfrac{3}{ {y}^{2}} \bigg]}{  {y}^{2} \bigg[1+  \dfrac{2}{y} +  \dfrac{5}{ {y}^{2}} \bigg]}

\rm \:  =  \:\displaystyle\lim_{y \to   \infty }\rm  \frac{\bigg[2+  \dfrac{1}{y} +  \dfrac{3}{ {y}^{2}} \bigg]}{\bigg[1+  \dfrac{2}{y} +  \dfrac{5}{ {y}^{2}} \bigg]}

\rm \:  =  \: \dfrac{2 + 0 + 0}{1 + 0 + 0}

\rm \:  =  \: 2

Hence,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to  -  \infty }\rm  \frac{ {2x}^{2}  - x + 3}{ {x}^{2}  - 2x + 5}} = 2}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

 \purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1}}}

 \purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1}}}

 \purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1}}}

 \purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1}}}

 \purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga}}}

Similar questions