Math, asked by safianamet, 1 year ago

compute sin 15degree from the functions of 60degree and 45degree​

Answers

Answered by MehulPalod
6

Explanation is written in the image linked above.

Attachments:
Answered by richapariya121pe22ey
1

Step-by-step explanation:

\sin(45) =  \frac{1}{ \sqrt{2} }  \\  \sin(60)  =  \frac{ \sqrt{3} }{2}  \\ \cos(45)  =  \frac{1}{ \sqrt{2} }  \\  \cos(60)   =  \frac{1}{2} \\  \sin( \alpha  -  \beta )   =  \sin( \alpha )  \cos( \beta )   +   \cos(  \alpha  )  \sin( \beta  )  \\  \\  \sin(60 - 45)  =  \sin(60)  \cos(45)   +  \cos(60)  \sin(45)  \\  =  >  \sin(15)  = ( \frac{ \sqrt{3} }{2} )( \frac{1}{ \sqrt{2} } )  +  ( \frac{1}{2} )( \frac{1}{ \sqrt{2} } ) \\  =  >  \sin(15)  =  \frac{ \sqrt{3} }{2 \sqrt{2} }   +  \frac{1}{2 \sqrt{2} }  \\   =  >  \sin(15)  =  \frac{ \sqrt{3}  + 1 }{2 \sqrt{2} }

Similar questions