Math, asked by Anonymous, 9 days ago

Compute the above limit function ​

Attachments:

Answers

Answered by Sweetoldsoul
5

Answer:

• 4

• 3

Step-by-step explanation:

 \lim_{x \rightarrow 2^+}([x] + x) \\ => 2 +2 // => 4 \\ \lim_{x \rightarrow 2^-}([x]+x) \\ => 1 + 2 \\ = 3 `

[.] denotes the Gretatest Integer Function(GIF) This means if X(input) lies in [n, n+1), then the Greatest Integer Function of X(output) will be n.

When x-> 2⁻,

the value will be somewhat like 1.99999 that is slightly smaller than 2, so when we're talking about slightly smaller than 2, the value comes under the range [1, 2)

therefore, the value of [x] will be 1.

When x-> 2⁺, it's value will be somewhat like 2.0000001, so that the value lies In the range [2, 3)

therefore, the value of [x] will be 2.

_______________

Hope this helps!

Attachments:
Answered by shadowsabers03
5

We know that, if a is an integer,

\small\text{$\longrightarrow x\in[a,\ a+1)\quad\iff\quad[x]=a$}

Then we see that,

\small\text{$\longrightarrow x\in[1,\ 2)\quad\iff\quad[x]=1$}

\small\text{$\longrightarrow x\in[2,\ 3)\quad\iff\quad[x]=2$}

Thus the function \small\text{$f:[1,\ 3)\to\mathbb{R}$} defined by \small\text{$f(x)=[x]+x$} is such that,

\small\text{$\longrightarrow f(x)=\left\{\begin{array}{ll}1+x,&1\leq x<2\\2+x,&2\leq x<3\end{array}\right.$}

Hence,

\small\text{$\displaystyle\longrightarrow\lim_{x\to2^+}f(x)=\lim_{x\to2^+}(2+x)$}

\small\text{$\displaystyle\longrightarrow\lim_{x\to2^+}f(x)=2+2$}

\small\text{$\displaystyle\longrightarrow\underline{\underline{\lim_{x\to2^+}f(x)=4}}$}

and,

\small\text{$\displaystyle\longrightarrow\lim_{x\to2^-}f(x)=\lim_{x\to2^-}(1+x)$}

\small\text{$\displaystyle\longrightarrow\lim_{x\to2^-}f(x)=1+2$}

\small\text{$\displaystyle\longrightarrow\underline{\underline{\lim_{x\to2^-}f(x)=3}}$}


amansharma264: Excellent
Similar questions