Math, asked by darshanraul, 4 months ago

Compute the amount and the compound interest in each of the following by using the
formulae when
Principal - Rs 5000, Rate = 10 paise per rupee per annum, Time = 2 years​

Answers

Answered by Anonymous
57

AnSwer :

\frak {\pink{Given}}\begin{cases}  \frak{\green{Principal=Rs.5000}}\\ \frak{\blue{Time=2\:Years}}\\ \frak{\orange{Rate=10\%}}\\ \frak{\red{Amount= \: ?}}\\ \frak{\gray{Compound \:  Interest = \: ?}}\end{cases} \\

We have to calculate the amount and compound interest. So, first we will calculate the amount by using given below formula :

:\implies\:\sf Amount = P \Bigg\lgroup 1 + \dfrac{R}{100} \Bigg\rgroup^{n}  \\  \\

Where,

  • A = Amount
  • P = Principal
  • R = Rate
  • n = Time

Now, simply just plug in the known values in above formula we get :

:\implies\:\sf Amount = 5000 \Bigg\lgroup 1 + \dfrac{10}{100} \Bigg\rgroup^{2}  \\  \\

:\implies\:\sf Amount = 5000 \Bigg\lgroup 1 + \dfrac{1}{10} \Bigg\rgroup^{2}  \\  \\

:\implies\:\sf Amount = 5000 \Bigg\lgroup  \dfrac{10 + 1}{10} \Bigg\rgroup^{2}  \\  \\

:\implies\:\sf Amount = 5000 \Bigg\lgroup  \dfrac{11}{10} \Bigg\rgroup^{2}  \\  \\

:\implies\:\sf Amount = 5000  \times   \dfrac{121}{100}  \\  \\

:\implies\:\sf Amount = 50  \times 121  \\  \\

:\implies\: \underline{ \boxed{\sf Amount =Rs. \:  6050}}  \\  \\

  • Hence,the amount is Rs. 6050

Now, let's find the Compound Intrest :

\dashrightarrow\:\:\sf Compound  \: Intrest = Amount - Principal \\  \\

\dashrightarrow\:\:\sf Compound  \: Intrest = 6050 - 5000 \\  \\

\dashrightarrow\:\: \underline{ \boxed{\sf Compound  \: Intrest =Rs. \:  1050}} \\  \\

  • Hence, the Compound Intrest is Rs. 1050.

\boxed{\begin{minipage}{5cm}\bigstar$\:\underline{\textbf{Profit and Loss Formulas :}}\\\\ \\ \sf{\textcircled{\footnotesize\textsf{1}}}S.P. =$\sf \bigg\lgroup\dfrac{100 + Profit \%}{100}\bigg\rgroup \times 100$\\\\\\ \sf {\textcircled{\footnotesize\textsf{2}}}\:C.P. = $\sf \dfrac{S.P. \times 100}{100 + Profit \%}$\\\\\\\sf{\textcircled{\footnotesize\textsf{3}}}\:Profit = $\sf \dfrac{Profit \% \times C.P.}{100}$\\\\\\ \sf{\textcircled{\footnotesize\textsf{4}}}Profit (gain) = S.P. - C.P. \\\\\\\sf{\textcircled{\footnotesize\textsf{5}}}\:$\sf Profit \% = \dfrac{Profit}{C.P.} \times 100$\end{minipage}}

Answered by Anonymous
11

\boxed{\huge{\bf{\star{Correct\:question \:-:}}}}

  • Compute the amount and the compound interest in each of the following by using the formulae when ,
  • Principal - Rs 5000, Rate = 10 %, Time = 2 years.

AnswEr-:

  • \boxed{\sf{\large { Amount =\:Rs.\:6050 }}}

  • \boxed{\sf{\large { Compound \:Interest\:=\:Rs.1050 \: }}}

\dag{\sf{\large { EXPLANATION:\:}}}

  •  \frak{Given \:\: -:} \begin{cases} \sf{Principal= \frak{Rs.5000}} & \\\\ \sf{Rate \:=\:\frak{10\%}}& \\\\ \sf{Time \:=\:\frak{2 \ year}}\end{cases} \\\\

  •  \frak{To \:Find\: -:} \begin{cases} \sf{The\:Amount, \: and, } & \\\\ \sf{The\:Compound\:Interest. }\end{cases} \\\\

\dag{\sf{\large { Solution-:\:}}}

  • \implies{\sf{\large { Amount \: =P\left(1 \: +\dfrac{R}{100} \right)^{n}}}}

  •  \frak{Here \:\: -:} \begin{cases} \sf{P \:= \:Principal\:= \frak{Rs.5000}} & \\\\ \sf{R\:=Rate \:=\:\frak{10\%}}& \\\\ \sf{n \: = Time \:=\:\frak{2 \ year}}& \\\\ \sf{A\:=Amount \:=\:\frak{??}}\end{cases} \\\\

\dag{\sf{\large { Now,\:Substitute \:the\:Known\:value\:in\:Formula.-: }}}

  • \implies{\sf{\large { Amount \: =5000 \left(1 \: +\dfrac{10}{100} \right)^{2}}}}

  • \star{\sf{\large { Or,\:}}}

  • \implies{\sf{\large { Amount \: =5000\left(\dfrac{1}{1} \: +\dfrac{10}{100} \right)^{2}}}}

  • \implies{\sf{\large { Amount \: =5000\left(\dfrac{1}{1} \: +\dfrac{1}{10} \right)^{2}}}}

  • \implies{\sf{\large { LCM \:of\:10\:and\:1\:is = \:10}}}

  • \implies{\sf{\large { Amount \: =5000\left( \: \dfrac{10+1}{10} \right)^{2}}}}

  • \implies{\sf{\large { Amount \: =5000\left( \: \dfrac{11}{10} \right)^{2}}}}

  • \implies{\sf{\large { 11^{2} = \:121\:and\:,\:10^{2}= 100}}}

  • \implies{\sf{\large { Amount \: =5000 \times  \dfrac{121}{100} }}}

  • \implies{\sf{\large { Amount \: =50 \times 121 }}}

  • \implies{\sf{\large { Amount =\:Rs.\:6050 }}}

\star{\sf{\large { Therefore-:\:}}}

  • \boxed{\sf{\large { Amount =\:Rs.\:6050 }}}

\star{\sf{\large { Now-:\:}}}

  • \implies{\sf{\large { Compound \:Interest\:=\:Amount \:- Principal }}}

  •  \frak{Here\: -:} \begin{cases} \sf{\:Amount=\:Rs.6050 \: and, } & \\\\ \sf{Principal\:=Rs.5000 }\end{cases} \\\\

\star{\sf{\large { Now-:\:}}}

  • \implies{\sf{\large { Compound \:Interest\:=\:6050 \:- 5000 }}}

  • \implies{\sf{\large { Compound \:Interest\:=\:1050 \: }}}

\star{\sf{\large { Therefore-:\:}}}

  • \boxed{\sf{\large { Compound \:Interest\:=\:1050 \: }}}

\star{\sf{\large { Hence:\:}}}

  • \boxed{\sf{\large { Amount =\:Rs.\:6050 }}}

  • \boxed{\sf{\large { Compound \:Interest\:=\:Rs.1050 \: }}}

__________________________♡_______________________

Similar questions