Math, asked by ac4592868, 2 months ago

compute the derivative of :-
f(x)=x+1/x​

Answers

Answered by mathdude500
5

Formula Used :-

\boxed{ \red{ \bf \: \dfrac{d}{dx} {x}^{n}   =  {nx}^{n - 1}}}

\boxed{ \red{ \bf \: \dfrac{d}{dx} {x}   =  1}}

Solution :-

\rm :\longmapsto\:Let \: y \:  =  \: x + \dfrac{1}{x}

On differentiating w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}  \: y \:  = \dfrac{d}{dx} ( \: x + \dfrac{1}{x} )

\rm :\longmapsto\:\dfrac{dy}{dx}  \: \:  = \dfrac{d}{dx} \: x +\dfrac{d}{dx}( {x}^{ - 1})

\rm :\longmapsto\:\dfrac{dy}{dx}  = 1 + ( - 1) {x}^{ - 1 - 1}

\rm :\longmapsto\:\dfrac{dy}{dx}  = 1 -  {x}^{ - 2}

\rm :\longmapsto\:\dfrac{dy}{dx} = 1 - \dfrac{1}{ {x}^{2} }

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{ {x}^{2}  - 1}{ {x}^{2} }

Additional Information :-

\boxed{ \green{ \bf \: \dfrac{d}{dx}k = 0}}

\boxed{ \green{ \bf \: \dfrac{d}{dx}sinx = cosx}}

\boxed{ \green{ \bf \: \dfrac{d}{dx}cosx =  - sinx}}

\boxed{ \green{ \bf \: \dfrac{d}{dx}cosecx =  - cosecx \: cotx}}

\boxed{ \green{ \bf \: \dfrac{d}{dx}secx =  secx \: tanx}}

\boxed{ \green{ \bf \: \dfrac{d}{dx} tanx =  {sec}^{2}x}}

\boxed{ \green{ \bf \: \dfrac{d}{dx} cotx =   - {cosec}^{2}x}}

\boxed{ \green{ \bf \: \dfrac{d}{dx}  \sqrt{x}  = \dfrac{1}{2 \sqrt{x} }}}

\boxed{ \green{ \bf \: \dfrac{d}{dx} u.v =  \: v\dfrac{d}{dx} u \:  +  \: u\dfrac{d}{dx} v}}

\boxed{ \green{ \bf \: \dfrac{d}{dx} \dfrac{u}{v}  = \dfrac{v\dfrac{d}{dx} u \:  -  \: u\dfrac{d}{dx} v}{ {v}^{2} }}}

Note :-

Let us solved one example using quotient rule :-

\rm :\longmapsto\:Let \: y \:  =  \: \dfrac{x + 1}{x}

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} \: y \:  =  \dfrac{d}{dx} \: \dfrac{x + 1}{x}

Here,

  • u = x + 1

  • v = x

On substituting these values of u and v, we get

\rm :\longmapsto\:\dfrac{dy}{dx}  = \dfrac{x\dfrac{d}{dx} (x + 1) - (x + 1)\dfrac{d}{dx} x}{ {x}^{2} }

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{x(1 + 0) - (x + 1)(1)}{ {x}^{2} }

\rm :\longmapsto\:\dfrac{dy}{dx}  = \dfrac{x - x - 1}{ {x}^{2} }

\rm :\longmapsto\:\dfrac{dy}{dx}  = \dfrac{-1}{ {x}^{2} }

Similar questions