Math, asked by kashirgaming4, 19 days ago

compute the derivative of sin x from the first principle

Answers

Answered by namratabakshi86
0

Answer:

A battery is a device that stores energy and then discharges it by converting chemical energy into electricity. Typical batteries most often produce electricity by chemical means through the use of one or more electrochemical cells.

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\tt{y=sin(x)}

Now,

\displaystyle\rm{\dfrac{dy}{dx}=\lim_{h\to0}\dfrac{sin(x+h)-sin(x)}{h}}

Applying sin(C) - sin(D) formula,

\displaystyle\rm{\implies\,\dfrac{dy}{dx}=\lim_{h\to0}\dfrac{2\,cos\left(\dfrac{2x+h}{2}\right)\,sin\left(\dfrac{x+h-x}{2}\right)}{h}}

\displaystyle\rm{\implies\,\dfrac{dy}{dx}=\lim_{h\to0}\dfrac{2\,cos\left(\dfrac{2x+h}{2}\right)\,sin\left(\dfrac{h}{2}\right)}{h}}

\displaystyle\rm{\implies\,\dfrac{dy}{dx}=\lim_{h\to0}\dfrac{cos\left(\dfrac{2x+h}{2}\right)\,sin\left(\dfrac{h}{2}\right)}{\dfrac{h}{2}}}

\displaystyle\rm{\implies\,\dfrac{dy}{dx}=\lim_{h\to0}\,cos\left(\dfrac{2x+h}{2}\right)\cdot\lim_{\frac{h}{2}\to0}\dfrac{\,sin\left(\dfrac{h}{2}\right)}{\dfrac{h}{2}}}

\displaystyle\rm{\implies\,\dfrac{dy}{dx}=cos\left(\dfrac{2x+0}{2}\right)\cdot1}

\displaystyle\rm{\implies\,\dfrac{dy}{dx}=cos\left(\dfrac{2x}{2}\right)}

\displaystyle\rm{\implies\,\dfrac{dy}{dx}=cos\left(x\right)}

Similar questions