Math, asked by jasonjacob920, 9 months ago

Compute the derivative of
 \sin(x) and \tan(x)

Answers

Answered by Sharad001
9

Question :-

Compute the derivative .

Answer :-

Derivatives :-

(1) \sf \:  \:  \frac{d}{dx} {x}^{n}   = n {x}^{n - 1}  \\  \\ (2) \sf \:   \frac{d}{dx}  \sin x =  \cos x \\  \\  (3) \sf \:   \frac{d}{dx}  \cos x =  -  \sin x \\  \\ (4) \sf \:  \frac{d}{dx}  \tan x =  { \sec}^{2} x \\  \\ (5) \sf \:  \:  \frac{d}{dx}  \sec x =  \sec x \: . \tan x \\  \\ (6) \sf  \frac{d}{dx}  \cot x =  -  \:  {   \cosec}^{2} x \\  \\ (7) \sf \:  \frac{d}{dx}  \:  \cosec x =  -  \cosec x \: . \cot x \\  \\(8) \sf \:  \frac{d}{dx}  \log x =  \frac{1}{x}  \\  \\ (9) \sf \: \frac{d}{dx}  \:  {a}^{x}  =  {a}^{x}   \:  log_{e}(a)  \\  \\ (10) \sf \:  \frac{d}{dx}  \:  {e}^{x}  =  {e}^{x}  \\  \\ (11) \sf \:  \:  \frac{d}{dx}  constant \:  = 0 \\  \\ (12) \sf \:  \frac{d}{dx}  { \sin}^{ - 1} x =  \frac{1}{ \sqrt{1 -  {x}^{2} } }

(13) \sf \:   \frac{d}{dx}  { \cos}^{ - 1} x =  \frac{ - 1}{ \sqrt{1 -  {x}^{2} } }  \\  \\ (14) \sf \:  \frac{d}{dx}   { \tan}^{ - 1} x =  \frac{1}{1 +  {x}^{2} }  \\  \\ (15) \sf \:  \:  \frac{d}{dx}   { \sec}^{ - 1} x =  \frac{ 1}{x  \sqrt{ {x}^{2} - 1 }  }  \\  \\  (16) \sf \:   \frac{d}{dx}  { \cosec}^{ - 1} x =  \frac{-1}{ x\sqrt{ {x}^{2}  - 1} }

Similar questions