Math, asked by koollamanirathnam, 4 days ago

compute the following by using the above identities
99 {}^{2}
(100.1) {}^{2}
49  \times  51


Answers

Answered by mathdude500
29

\large\underline{\sf{Solution-a}}

\rm \:  {99}^{2}  \\

can be rewritten as

\rm \:  =  \:  {(100 - 1)}^{2}  \\

We know,

\boxed{\rm{  \: {(x - y)}^{2} =  {x}^{2} - 2xy +  {y}^{2}  \: }} \\

Here,

\rm \: x = 100 \\

\rm \: y = 1 \\

So, on substituting these values, in above identity, we get

\rm \:  =  \:  {(100)}^{2} - 2 \times 100 \times 1 +  {(1)}^{2}  \\

\rm \:  =  \:  10000 - 200 + 1  \\

\rm \:  =  \: 9801 \\

Hence,

 \red{\rm\implies \:\boxed{\rm{  \: {99}^{2} = 9801 \: }}} \\

\large\underline{\sf{Solution-b}}

\rm \:  {(100.1)}^{2} \\

\rm \: =  \:   {(100 + 0.1)}^{2} \\

We know,

\boxed{\rm{  \: {(x  +  y)}^{2} =  {x}^{2}  +  2xy +  {y}^{2}  \: }} \\

So, here

\rm \: x = 100 \\

\rm \: y = 0.1 \\

So, on substituting the values in above identity, we get

\rm \:  =  \:  {(100)}^{2} + 2 \times 100 \times 0.1 +  {(0.1)}^{2}  \\

\rm \:  =  \:  10000 + 20 +  0.01  \\

\rm \:  =  \: 10020.01 \\

Hence,

 \green{\rm\implies \:\boxed{\rm{  \: {(100.1)}^{2} = 10020.01 \:  \: }}} \\

\large\underline{\sf{Solution-c}}

\rm \: 51 \times 49 \\

\rm \:  =  \: (50 + 1) \times (50 - 1) \\

We know,

\boxed{\rm{  \:(x + y)(x - y) =  {x}^{2} -  {y}^{2} \:  \: }} \\

So, here

\rm \: x \:  =  \: 50 \\

\rm \: y \:  =  \: 1 \\

So, on substituting the values in above identity, we get

\rm \:  =  \:  {(50)}^{2} -  {(1)}^{2}  \\

\rm \:  =  \: 2500 - 1 \\

\rm \:  =  \: 2499 \\

Hence,

 \blue{\rm\implies \:\boxed{\rm{  \:51 \times 49 \:  =  \: 2499 \:  \: }}} \\

\rule{190pt}{2pt}

Additional Information :-

\boxed{\rm{  \: {(x + y)}^{2} - 4xy =  {(x - y)}^{2} \: }} \\

\boxed{\rm{  \: {(x  -  y)}^{2}  +  4xy =  {(x  +  y)}^{2} \: }} \\

\boxed{\rm{  \: {(x + y)}^{2} -  {(x - y)}^{2} = 4xy \:  \: }} \\

\boxed{\rm{  \: {(x + y)}^{2} +  {(x - y)}^{2} = 2( {x}^{2} +  {y}^{2})  \:  \: }} \\

Answered by lmpostor
26

\underline{\huge \tt{ \red{A} \blue{n} {S} \green{w} \pink{E}  \orange{r}}}

 \\  \bf \: a) \:  \:  \:  {99}^{2} \\   \\    \sf \: (100 - 1 {)}^{2} \\  \\ \bigstar \boxed{ \mathfrak{ {(a - b)}^{2}  =  {a}^{2}  - 2ab +  {b}^{2} }} \\

Here ,

  • a = 100
  • b = 1

\longmapsto \sf \:  {100}^{2}  - 2(100)(  1) +  {1}^{2}  \\ \longmapsto\sf \: 10000 - 200 + 1 \\  \longmapsto \sf \:  \red{9801} \\

__________

 \\  \bf b) \:  \:  \: 100. {1}^{2}  \\  \\  \sf \: (100 + 0. {1)}^{2}  \\  \\  \bigstar \boxed{ \mathfrak{(a { + b)}^{2} =  {a}^{2}  + 2ab +  {b}^{2}  }} \\

Here ,

  • a = 100
  • b = 0.1

\longmapsto \sf \:  {100}^{2}  + 2(100)(0 .1) +  { 0.1}^{2}  \\ \longmapsto \sf \: 10000 + 20 + 0.01 \\  \longmapsto \sf \:  \red{10020.01} \\

__________

 \\  \bf \: c) \:  \: 49 \times 51 \\  \\  \sf \: (50 - 1)(50 + 1) \\  \\  \bigstar \boxed{ \mathfrak{(x - a)(x + a) =  {x}^{2} -  {a}^{2}  }} \\

Here ,

  • x = 50
  • a = 1

 \\ \longmapsto \sf \:  {50}^{2}  -  {1}^{2}  \\ \longmapsto \sf \: 2500 - 1 \\  \longmapsto \sf   \red{ 2499}

Similar questions