Math, asked by hiteshsinghahuja88, 5 hours ago

Compute the following limits:
lim x->2
(3 {x}^{2}  + 3x  - 18)  \(x - 2)
lim h->0
 \sqrt{h + 1}  - 1 \div h

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \lim_{x \rarr2} \frac{3 {x}^{2} + 3x - 18 }{x - 2}   \\

 = \lim_{x \rarr2} \frac{3 {x}^{2} +  9x - 6x - 18 }{x - 2} \\

 = \lim_{x \rarr2} \frac{3x(x +  3) - 6(x   +3)  }{x - 2} \\

 = \lim_{x \rarr2} \frac{(3x - 6)(x +  3)  }{x - 2} \\

 = \lim_{x \rarr2} \frac{3(x - 2)(x +  3)  }{x - 2} \\

 = \lim_{x \rarr2} 3(x +  3)  \\

 =  3(2 +  3)  \\

 =  15  \\

Similar questions