Math, asked by jawashalini, 1 month ago

compute the invariant points of the transformation w= -2z+4i/iz+1 ​

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\mathsf{w=\dfrac{-2z+4i}{iz+1}}

\underline{\textbf{To find:}}

\mathsf{Invariant\;points\;of\;w=\dfrac{-2z+4i}{iz+1}}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{w=\dfrac{-2z+4i}{iz+1}}

\textsf{The invariant points are obtained by solving}

\mathsf{the\;equation}\;\;\bf\;z=\dfrac{-2z+4i}{iz+1}

\implies\mathsf{z(iz+1)=-2z+4i}

\implies\mathsf{iz^2+z=-2z+4i}

\implies\mathsf{iz^2+3z-4i=0}

\implies\mathsf{z^2-3i\,z-4=0}

\textsf{This can be written as,}

\implies\mathsf{z^2-3i\,z=4}

\implies\mathsf{z^2-3i\,z-\dfrac{9}{4}=4-\dfrac{9}{4}}

\implies\mathsf{\left(z-\dfrac{3i}{2}\right)^2=\dfrac{7}{4}}

\textsf{Taking square root on bothsides, we get}

\mathsf{z-\dfrac{3i}{2}=\pm\,\dfrac{\sqrt{7}}{2}}

\implies\mathsf{z=\dfrac{3i}{2}\pm\,\dfrac{\sqrt{7}}{2}}

\implies\boxed{\mathsf{z=\dfrac{3i\,\pm\,\sqrt{7}}{2}}}

\therefore\textbf{The invariant points are}\;\bf\,\dfrac{3i\,+\,\sqrt{7}}{2}\;\;\&\;\;\dfrac{3i\,-\,\sqrt{7}}{2}

Answered by divyanjali714
1

Concept: Invariant points means that the point on a graph than remains unchanged after the transformation applied on it.

Given: w= -2z+4i/iz+1 ​

Find: Find the invariant points of the transformation.

Solution: Let w=z

w=\frac{-2z+4i}{iz+1}

  = z(iz+1)=-2z+4i

  = iz^{2}+z=-2z+4i

  =  iz^{2}+z-4i+2z=0

  =  z^{2}-3iz-4=0

  =   z^{2}-3iz=4

   = z^{2}-3iz-\frac{9}{4} =4-\frac{9}{4}

   = (z-\frac{3i}{2}) ^{2}=\frac{7}{4}

Square root on both sides.

  z-\frac{3i}{2}= \frac{\sqrt{7} }{2}

   z-\frac{3i}{2}\frac{\sqrt{7} }{2}

  z= \frac{3i}{2}±\frac{\sqrt{7} }{2}

Final answer: The invariant points of the transformation are \frac{3i}{2}+\frac{\sqrt{7} }{2} and \frac{3i}{2}-\frac{\sqrt{7}}{2}.

#SPJ3

Similar questions