Math, asked by ssb281999, 9 months ago

Compute the inverse laplace transform of 7/(s-1)^3​

Answers

Answered by hukam0685
16

Step-by-step explanation:

Given:

 \frac{7}{ {(s- 1)}^{3} }  \\

To find: Compute inverse Laplace of given function.

Solution:

Formula used:

\bold{\red{ {£}^{ - 1}   \left( \frac{1}{(s - a)^{n} } \right) =  \frac{ {e}^{at} {t}^{n - 1}  }{(n - 1)!} }} \\

Use the above formula

 {£}^{ - 1}   \left( \frac{7}{(s - 1)^{3} } \right) =  \frac{ 7{e}^{t} {t}^{3 - 1}  }{(3- 1)!}   \\ \\  {£}^{ - 1}   \left( \frac{7}{(s - 1)^{3} } \right) =  \frac{ 7{e}^{t} {t}^{2}  }{(2)!} \\   \\ {£}^{ - 1}   \left( \frac{7}{(s - 1)^{3} } \right) =  \frac{ 7{e}^{t} {t}^{2}  }{2}

Final answer:

\bold{\green{{£}^{ - 1}   \left( \frac{7}{(s - 1)^{3} } \right) =  \frac{ 7{e}^{t} {t}^{2}  }{2}}} \\

Hope it helps you.

To learn more on brainly:

1) using laplace transform solve y''+5y'+6y=2 given y(0)=0 y'(0)=0

https://brainly.in/question/33145154

2)find the inverse laplace transform of 1/(s+3)^5

https://brainly.in/question/29013728

Similar questions