Math, asked by nandy1010101, 7 months ago

Compute the median of the following data:

Marks 80-90 90-100 100-110 110-120 120-130 130-140 140- 150

150- 160

Frequency 9 17 19 45 33 15 12 0​

Answers

Answered by Palakdeepjammu
1

Answer:

AccordingtotheQuestion

\begin{gathered}\begin{array}{|c|c|c|}\cline{1-3}Marks\;Obtained & Number\;of\;Students(f) & C.F \\ \\ \cline{1-3} 140-150 & 12 & 12 \\ \\ \cline{1-3} 130-140 & 27-12=15 & 27 \\ \\ \cline{1-3} 120-130 & 60-27=33 & 60 \\ \\ \cline{1-3} 110-120 & 105-60=45 & 105 \\ \\ \cline{1-3} 100-110 & 124-105=19 & 124 \\ \\ \cline{1-3} 90-100 & 141-124=17 & 141 \\ \\ \cline{1-3} 80-90 & 150-141=9 & 150 \end{array}\end{gathered}

\cline1−3MarksObtained

\cline1−3140−150

\cline1−3130−140

\cline1−3120−130

\cline1−3110−120

\cline1−3100−110

\cline1−390−100

\cline1−380−90

NumberofStudents(f)

12

27−12=15

60−27=33

105−60=45

124−105=19

141−124=17

150−141=9

C.F

12

27

60

105

124

141

150

N = 150

\tt{arrow\dfrac{n}{2}=75}arrow

2

n

=75

\because\boxed{Median\;class\;is\;110-120}∵

Medianclassis110−120

Here we have :-

\tt{arrow\dfrac{n}{2}=75}arrow

2

n

=75

l = 110, f = 45 , C.F = 60 and h = 10

\tt{arrow Median=\dfrac{n/2-C.F}{f}\times h}arrowMedian=

f

n/2−C.F

×h

\tt{arrow 110 + \dfrac{75-60}{45}\times 10}arrow110+

45

75−60

×10

\tt{arrow 110 + \dfrac{150}{45}\times 10}arrow110+

45

150

×10

= 110 + 3.33

= 113.33

{\boxed{Here\;Median\;=113.33\; marks}}

HereMedian=113.33marks

Step-by-step explanation:

Plzz follow me

Similar questions