Math, asked by Saby123, 10 months ago

Compute the sum upto infinite terms .

 \sf{ 1 + \dfrac{1}{2} + \dfrac{1}{6} + \dfrac{1}{12} + ....... \: \infty }

Answers

Answered by Rajshuklakld
6

Question:-

1 +  \frac{1}{2}  +  \frac{1}{2 \times 3}  +  \frac{1}{3 \times 4} + .....infinite \\ 1 +  \frac{1}{2}  + ( \frac{1}{2}  -  \frac{1}{3} ) + ( \frac{1}{3}  -  \frac{1}{4})+ ..... + \frac{1}{(infinity - 1) - infinity}  \\ analysing \: the \: terms \: we \: </strong><strong>can</strong><strong> \: say \: that \\ all \: the \: terms \: will \: be \: cancelled \: out \:  \\ except \: 1 </strong><strong>,</strong><strong>\:</strong><strong>1</strong><strong>/</strong><strong>2</strong><strong>,</strong><strong>1</strong><strong>/</strong><strong>2</strong><strong> and \:  \frac{1}{infinity}  \\  \frac{1}{infinity}  = 0 \\ so \: final \: value = 1</strong><strong>+</strong><strong>1</strong><strong>/</strong><strong>2</strong><strong>+</strong><strong>1</strong><strong>/</strong><strong>2</strong><strong>=2

Answered by Anonymous
2

Answer:

1/infinity=0

=> 1+1/2+1/6+1/12

=> 12+6+2+1/12

=> 21/12 ans.

Similar questions