Math, asked by jiabala, 1 year ago

compute the value of 9x^2+4y^2 if xy=6 and 3x+2y=12​

Answers

Answered by Aggarwala27
5

hey I am attaching as pic the answer 72

Attachments:
Answered by brokendreams
0

Step-by-step explanation:

Given : Two terms which are xy=6  and  3x+2y=12

To find : The value of  9x^{2} +4y^{2}.

Formula used : We use algebraic identity

(a+b)^{2} =a^{2} +b^{2} +2ab

  • Finding value of 9x^{2} +4y^{2}

We have values such as,

xy=6  

3x+2y=12

We start with the algebraic identity where a=3x  and b=2y.

⇒  (a+b)^{2} =a^{2} +b^{2} +2ab

⇒  (3x+2y)^{2} =(3x)^{2} +(2y)^{2} +2*3x*2y

               =9x^{2} +4y^{2} +12xy

we have to find the value of 9x^{2} +4y^{2} ,

⇒  (3x+2y)^{2}-12xy =9x^{2} +4y^{2}

by putting values of (3x+2y )  and xy  we get,

⇒  9x^{2} +4y^{2}=(12)^{2}-12*6

                =144-72

                =72

Hence we get the value of 9x^{2} +4y^{2} which is 72.

Similar questions