Math, asked by HyperXaLpHa, 10 months ago

Compute the value of mode for the following frequency distribution.
Class: Frequency:
100-110 4
110-120 6
120-130 20
130-140 32
140-150 33
150-160 8
160-170 2​

Answers

Answered by monu1224
7

here is your answer

hope this will help you

please mark as brainliest

Attachments:
Answered by jitendra420156
19

Therefore the mode of the distribution is 140.38.

Step-by-step explanation:

Class             Frequency                  cf

100-110               4                              4

110-120                6                             10

120-130             20                             30

130-140             32                             62

140-150             33                             95 (Mode class)

150-160               8                             103

160-170                2                            105

Maximum frequency is 33 present in 140-150 class.

Then , mode class is 140-150.

L = lower limit of mode class = 140

f₀= The frequency of preceding class of mode class = 32

f₁= The frequency of mode class= 33

f₂= The frequency of succeeding class of mode class =8

c= The class length of mode class= (150-140)=10

Mode

Z= L+\frac{f_1-f_0}{2f_1-f_0-f_2}

    =140+[\frac{33-32}{(2\times 33)-32-8} ].10

    =140.3846

    ≈140.38

Therefore the mode of given distribution is 140.38.

       

Similar questions