Math, asked by ummermuthu10, 5 months ago

Compute the volume of a cone of base radius 5cm and height 12cm.​

Answers

Answered by Asterinn
2

Radius of base of cone = 5 cm

Height of cone = 12 cm

We know that :-

 \boxed{ \rm \large Volume \:   \: of \:   \: cone =  \frac{1}{3}  \times \pi \times  {r}^{2} \times h } \\  \\  \rm \: where \:  \: r \:  = radius \: and \: h \:  = height \\  \\  \rm \: value \: of \: \pi = 3.14

\rm \longrightarrow \large Volume \:   \: of \:   \: cone =  \dfrac{1}{3}  \times 3.14 \times  {(5)}^{2} \times 12 \\  \\  \\ \rm \longrightarrow \large Volume \:   \: of \:   \: cone =  \dfrac{1}{3}  \times  \frac{314}{100} \times  5 \times 5 \times 12\\  \\  \\ \rm \longrightarrow \large Volume \:   \: of \:   \: cone =  \dfrac{1}{1}  \times  \frac{314}{1} \times  1 \times 1 \times 1\\  \\  \\ \rm \longrightarrow \large Volume \:   \: of \:   \: cone =  314 \:  {cm}^{3}

Answer :- 314 cm³

Learn more :

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = (4/3)πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

Attachments:
Answered by ItzzCrazySnowRider
0

Answer :- 314 cm³

........

Similar questions