Math, asked by nitincharan2009, 4 days ago

concrete pillar is a cylinder with a radius of 20cm and a height of 2m. Find the volume of the pill​

Answers

Answered by kumardivya566
0

Answer:

0.25

Step-by-step explanation:

volume of the cube is 22/7*radius*radius*hieght

hieght =2m

radius =0.2m

22/7*0.2*0.2*2

=0.25m cube= 250 litre

Answered by Anonymous
18

Given :

  • Radius of the pillar = 20 cm
  • Height of the pillar = 2 m

 \\ \rule{200pt}{3pt}

To Find :

  • Volume of the pillar = ?

 \\ \rule{200pt}{3pt}

Solution :

Formula Used :

  •  {\underline{\boxed{\orange{\sf{ Volume \; of \; Cylinder = \pi {r}^{2} h }}}}}

Where :

  •  {\sf{ \pi }} = 3.14
  • ➻ r = Radius
  • ➻ h = Height

 \\ \qquad{\rule{150pt}{1pt}}

Calculating the Volume :

 \begin{gathered} \dashrightarrow \; \; \sf { Volume = \pi {(r)}^{2} h } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { Volume = 3.14 \times {(20)}^{2} \times 2 } \; \; \; \; \; \; \bigg\lgroup {\purple{\sf{ 2 \; m = 200 \; cm }}} \bigg\rgroup \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { Volume = 3.14 \times 20 \times 20 \times 200 } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { Volume = \dfrac{314}{100} \times 20 \times 20 \times 200 } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { Volume = \dfrac{314}{\cancel{100}} \times 20 \times 20 \times \cancel{200} } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { Volume = 314 \times 20 \times 20 \times 2 } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { Volume = 314 \times 400 \times 2 } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { Volume = 314 \times 800 } \\ \end{gathered}

 \begin{gathered} \; \; {\qquad \; \; {\therefore \; {\underline{\boxed{\red{\pmb{\frak{ Volume = 251200 \; {cm}^{3} }}}}}}}} \\ \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

Therefore :

❛❛ Volume of the given concrete pillar is 251200 cm³ . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Similar questions