Math, asked by alam40962, 9 months ago

COne.
If the volume of a right circular cone is 100+ cm and height is 12cm., then let us write by
calculating, the slant height of the cone.
slant height of the tent​

Answers

Answered by chaitragouda8296
1

Given :

Volume of cone, v = 100 cm

Height of cone, h = 12 cm

To find :

Slant height of cone , l = ?

Formula :

volume \:  \: of \:  \: cone \:  \:  =  \frac{1}{3} \pi {r}^{2} h

l =  \sqrt{ {r}^{2}  +  {h}^{2} }

Solution :

Volume of cone = 100

 \frac{1}{3} \pi {r}^{2} h = 100

\pi {r}^{2}  \times 12 = 300

( by cross multiplying )

\pi {r}^{2}  =  \frac{300}{12 }

\pi {r}^{2}  = 25

 {r}^{2}  =  \frac{25}{\pi}

r =  \sqrt{ \frac{25}{\pi} } \:  \:  \:  \:  \:  \:  \:  cm

Then ,,,,

l =  \sqrt{ {r}^{2} +  {h}^{2}  }

l =  \sqrt{  {( \sqrt{ \frac{25}{\pi} } )}^{2}  +  {(12)}^{2}  }

l =   \sqrt{ \frac{2 5}{\pi}  + 144}

l =  \sqrt{ \frac{25 + 144\pi}{\pi} }

l =  \sqrt{ \frac{25 +  144 \times  \frac{22}{7} }{  \frac{22}{7} } }

l =  \sqrt{25 + 144 \times  \frac{22}{7} \times  \frac{7}{22}  }

l =   \sqrt{25 + 144}

l =  \sqrt{169}

l = 13 \:  \:  \:  \: cm

Therefore ,,,

The measure of slant height is 13cm ......

Similar questions
Math, 1 year ago