Math, asked by santa19, 2 days ago

conical bowl of diameter 7cm bowl filled with soup of height 6 cm find how much soup is needed to prepare for 320 patients​

Answers

Answered by StarFighter
8

Answer:

Given :-

  • A conical bowl of diameter 7 cm bowl filled with soup of height 6 cm.

\\

To Find :-

  • How much soup is needed to prepare for 320 patients.

\\

Formula Used :-

\clubsuit Radius Formula :

\bigstar \: \: \sf\boxed{\bold{\pink{Radius =\: \dfrac{Diameter}{2}}}}\: \: \: \bigstar\\

\clubsuit Volume Of Cone Formula :

\bigstar \: \: \sf\boxed{\bold{\pink{Volume_{(Cone)} =\: \dfrac{1}{3}{\pi}r^2h}}}\: \: \: \bigstar\\

where,

  • π = Pie or 22/7
  • r = Radius
  • h = Height

\\

Solution :-

First, we have to find the radius of a conical bowl :

Given :

  • Diameter = 7 cm

According to the question by using the formula we get,

\leadsto \bf Radius_{[Conical\: Bowl]} =\: \dfrac{Radius}{2}

So,

\leadsto \sf Radius_{[Conical\: Bowl]} =\: \dfrac{7}{2}

\leadsto \sf\bold{\green{Radius_{[Conical\: Bowl]} =\: 3.5\: cm}}\\

Hence, the radius of a conical bowl is 3.5 cm .

Now, we have to find the volume of one conical bowl :

Given :

  • Radius = 3.5 cm
  • Height = 6 cm

According to the question by using the formula we get,

\implies \bf Volume_{(Conical\: Bowl)} =\: \dfrac{1}{3}{\pi}r^2h\\

\implies \sf Volume_{(Conical\: Bowl)} =\: \dfrac{1}{3} \times \dfrac{22}{7} \times (3.5)^2 \times 6\\

\implies \sf Volume_{(Conical\: Bowl)} =\: \dfrac{22}{21} \times (3.5 \times 3.5) \times 6\\

\implies \sf Volume_{(Conical\: Bowl)} =\: \dfrac{22}{21} \times 12.25 \times 6\\

\implies \sf Volume_{(Conical\: Bowl)} =\: \dfrac{22}{21} \times 73.5\\

\implies \sf Volume_{(Conical\: Bowl)} =\: \dfrac{1617}{21}\\

\implies \sf\bold{\blue{Volume_{(Conical\:  Bowl)} =\: 77\: cm^3}}\\

Hence, the volume of one conical bowl is 77 cm³ .

Now, we have to convert cm³ into litres :

\mapsto \sf Volume_{(Conical\: Bowl)} =\: 77\: cm^3\\

\mapsto \sf Volume_{(Conical\: Bowl)} =\: \dfrac{77}{1000}\: litres\\

\mapsto \sf\bold{\purple{Volume_{(Conical\:  Bowl)} =\: 0.077\: litres}}\\

Now, we have to find how much soup is needed to prepare for 320 patients :

Given :

  • Number of patients = 320 patients
  • Volume of one conical bowl = 0.077 litres

According to the question :

\dashrightarrow \sf 320 \times 0.077\\

\dashrightarrow \sf\bold{\red{24.64\: litres}}\\

\therefore The soup needed to prepare for 320 patients is 24.64 litres .

\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Answered by utkarshsahu1804
4

The volume of one conical bowl is 77 cm³.

Volume of 320 such bowls = 77 × 320

Volume of 320 such bowls = 24640 cm³

Convert cm³ to litres.

1 cm³ = 0.001 l

24640 cm³ = 24.64

24.64 litres of soup is required for 320 patients.

bht shi ignore kr diya :(

Similar questions