conjucate of complex number (3-i) ²/2+i
Answers
Answer:
Answer
Let z=−2+2
3
i
Then, modulus of z = ∣z∣=
(−2)
2
+(2
3
)
2
=
16
=4.
Step-by-step explanation:
is Given That ,
z = \frac{ {(3 - i)}^{2} }{2 + i}z=
2+i
(3−i)
2
now By using Identity,
{(a - b)}^{2} = {a}^{2} + {b}^{2} - 2ab(a−b)
2
=a
2
+b
2
−2ab
We Get,
\frac{ ({3}^{2} + {i}^{2} - 2 \times 3 \times i )}{2 + i}
2+i
(3
2
+i
2
−2×3×i)
We Know that,
{i}^{2} = - 1i
2
=−1
putting value,
we get,
\frac{9 - 1 - 6i}{2 + i}
2+i
9−1−6i
z = \frac{8 - 6i}{2 + i}z=
2+i
8−6i
Now , Rationalize it,
\frac{8 - 6i}{2 + i} \times \frac{2 - i}{2 - i}
2+i
8−6i
×
2−i
2−i
z = \frac{(8 - 6i)(2 - i)}{(2 + i)(2 - i)}z=
(2+i)(2−i)
(8−6i)(2−i)
z = \frac{16 - 8i - 12i + 6 {i}^{2} }{ {2}^{2} - {i}^{2} }z=
2
2
−i
2
16−8i−12i+6i
2
Again Filling The Value of
{i}^{2} = - 1i
2
=−1
We get,
z = \frac{16 -20i - 6}{4 - ( - 1)}z=
4−(−1)
16−20i−6
z = \frac{10 - 20i}{4 + 1}z=
4+1
10−20i
z = \frac{10 - 20i}{5}z=
5
10−20i
Split Both Imaginary and Real Roots,
z = \frac{10}{5} - \frac{20i}{5}z=
5
10
−
5
20i
z = 2 - 4iz=2−4i
Now We Have To Find the Conjugate ,
Conjugate Means To Simply Change the Signs of imaginary Root,
Conjugate is equal To ,
\frac{}{z} = 2 + 4i
z
=2+4i