Physics, asked by IndianreunionLeader, 8 months ago

Consider a bar magnet having magnetic length 10cm and pole strength 7.5Am. What will be the magnitude of magnetic field at a distance of 10 cm from the center of the magnet on the line, which is along the axis of magnet?​

Answers

Answered by nirman95
1

Given:

A bar magnet having magnetic length 10cm and pole strength 7.5 Am.

To find:

Magnitude of magnetic field at a distance of 10 cm from magnet.

Calculation:

General expression for magnetic field intensity on the axis of a magnetic dipole is given as:

 B =  \dfrac{  \mu_{0}}{4\pi}  \bigg \{ \dfrac{2Mx}{ {( {x}^{2} -  {l}^{2}   )}^{2} }  \bigg \}

Putting available values in SI unit:

  =  > B =  \dfrac{  \mu_{0}}{4\pi}  \bigg \{ \dfrac{2 \times 7.5 \times ( \frac{10}{100}) }{ {( {0.1}^{2} -  {0.05}^{2}   )}^{2} }  \bigg \}

  =  > B =  \dfrac{  \mu_{0}}{4\pi}  \bigg \{ \dfrac{15 \times ( \frac{10}{100}) }{ {( {0.1}^{2} -  {0.05}^{2}   )}^{2} }  \bigg \}

  =  > B =  \dfrac{  \mu_{0}}{4\pi}  \bigg \{ \dfrac{15 \times 0.1}{ {( {0.1}^{2} -  {0.05}^{2}   )}^{2} }  \bigg \}

  =  > B =  \dfrac{  \mu_{0}}{4\pi}  \bigg \{ \dfrac{15 \times 0.1}{ {( {10}^{ - 2} -  0.25 \times  {10}^{ - 2}    )}^{2} }  \bigg \}

  =  > B =  \dfrac{  \mu_{0}}{4\pi}  \bigg \{ \dfrac{15 \times 0.1}{ {(   0.75 \times  {10}^{ - 2}    )}^{2} }  \bigg \}

  =  > B =  \dfrac{  \mu_{0}}{4\pi}  \bigg \{ \dfrac{15 \times 0.1}{ {(   75 \times  {10}^{ - 4}    )}^{2} }  \bigg \}

  =  > B =  \dfrac{  \mu_{0}}{4\pi}  \bigg \{ \dfrac{1.5 }{ {(   75 \times  {10}^{ - 4}    )}^{2} }  \bigg \}

  =  > B =  \dfrac{  \mu_{0}}{4\pi}  \bigg \{ \dfrac{1.5 }{ (5625 \times  {10}^{ - 8}   )}  \bigg \}

  =  > B =  \dfrac{  \mu_{0}}{4\pi}  \bigg \{ \dfrac{1.5  \times  {10}^{8} }{ 5625 }  \bigg \}

  =  > B =   {10}^{ - 7} \times    \bigg \{ \dfrac{1.5  \times  {10}^{8} }{ 5625 }  \bigg \}

  =  > B = \dfrac{1.5  \times  {10}^{1} }{ 5625 }

  =  > B = \dfrac{15 }{ 5625 }

  =  > B = 26.6 \times  {10}^{ - 4}  \: tesla

So, final answer is:

 \boxed{ \bf{ B = 26.6 \times  {10}^{ - 4}  \: tesla}}

Similar questions