Physics, asked by Saurabh341, 11 months ago

Consider a compound slab consisting of two
different materials having equal thicknesses and
thermal conductivities K and 2K, respectively.
The equivalent thermal conductivity of the slab
is
(a) 4 K (b) 2 K
3 3
(c) √3 K (d) 3 K

Answers

Answered by Anonymous
10

\huge\underline{\underline{\bf \orange{Question-}}}

Consider a compound slab consisting of two different materials having equal thicknesses and thermal conductivities K and 2K, respectively.

The equivalent thermal conductivity of the slab is

\huge\underline{\underline{\bf \orange{Solution-}}}

\large\underline{\underline{\sf Given:}}

  • Thermal conductivities are K and 2K

\large\underline{\underline{\sf To\:Find:}}

  • Equivalent thermal conductivity

Thermal Resistance (R)

\large{\boxed{\bf \blue{R=\dfrac{l}{KA}} }}

Lenght is same for both material

So ,

\implies{\sf  \dfrac{l}{K_{eq}}=\dfrac{l}{K_1}+\dfrac{l}{K_2}}

\implies{\sf \dfrac{2l}{K_{eq}}= \dfrac{l}{K}+\dfrac{l}{2K}}

\implies{\sf \dfrac{2}{K_{eq}}=\dfrac{1}{K}+\dfrac{1}{2K} }

\implies{\sf \dfrac{2}{K_{eq}}=\dfrac{2K+K}{2K^2}}

\implies{\sf \dfrac{2}{K_{eq}}= \dfrac{3K}{2K^2} }

\implies{\sf \dfrac{2}{K_{eq}}=\dfrac{3}{2K}}

\implies{\sf \dfrac{K_{eq}}{2}=\dfrac{2K}{3}}

\implies{\sf K_{eq}=\dfrac{2×2K}{3} }

\implies{\bf \red{K_{eq}=\dfrac{4K}{3}}}

\huge\underline{\underline{\bf \orange{Answer-}}}

The equivalent thermal conductivity of the slab

is {\bf \red{\dfrac{4K}{3}}}.

Similar questions