Math, asked by MiraculousBabe, 3 months ago

Consider a rectangle that has a perimeter of 80\ \text{cm}. Write a function A(l) that represents the area of the rectangle with length l.​

Answers

Answered by mathdude500
14

\large\underline{\sf{Given- }}

\rm :\longmapsto\:Length_{(rectangle)} \:  =  \: L \: cm

\rm :\longmapsto\:Perimeter_{(rectangle)} =  \: 80 \: cm

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:Area_{(rectangle)}

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{ \sf \: Area_{(rectangle)} = Length_{(rectangle)} \times Breadth_{(rectangle)}}

 \boxed{ \sf \: Perimeter_{(rectangle)} = 2(Length_{(rectangle)} + Breadth_{(rectangle)})}

\large\underline{\sf{Solution-}}

Given that ,

  • Length of rectangle = L cm

Let

  • Breadth of rectangle = 'b' cm

Since,

  • Perimeter of rectangle = 80 cm

We know,

 \sf \: Perimeter_{(rectangle)} = 2(Length_{(rectangle)} + Breadth_{(rectangle)})

\rm :\longmapsto\:80 = 2(L + b)

\rm :\longmapsto\:L \:  +  \: b \:  =  \: 40

\bf\implies \:b \:  =  \: 40 - L \:  -  -  - (1)

Now,

We have,

  • Length of rectangle = L cm

  • Breadth of rectangle, b = (40 - L) cm

So,

Area of rectangle is

 \sf \: Area_{(rectangle)} = Length_{(rectangle)} \times Breadth_{(rectangle)}

\rm :\longmapsto\:Area_{(rectangle)} = L \: \times  \: (40 - L)

\rm :\longmapsto\:Area_{(rectangle)} = 40L\:  -  \:  {L}^{2}

Additional Information :-

 \boxed{ \sf \: Area_{(square)} =  {(side)}^{2}}

 \boxed{ \sf \: Area_{(circle)} = \pi \:  {r}^{2} }

 \boxed{ \sf \: Perimeter_{(square)} = 4 \times side}

 \boxed{ \sf \: Perimeter_{(circle)} = 2\pi \: r}

 \boxed{ \sf \: Area_{(right \: \triangle)} = \dfrac{1}{2}  \times base \times height}

 \boxed{ \sf \: Area_{(parallelogram)} = base \times height}

\boxed{ \sf \: Area_{(rhombus)}=base \times height=\dfrac{1}{2}(product \: of \: diagonals)}

Answered by Anonymous
1

It is the correct answer.

Step-by-step explanation:

Hope this attachment helps you.

Attachments:
Similar questions