consider a system of two masses m1 and m2. let u1 be the initial velocity of mass m1 and let m2 be at rest. the masses undergo an elastic collision in one dimension. derive the expression for the velocities of the two masses after the collision.
Answers
Given : Consider a system of two masses m₁ and m₂
let u₁ be the initial velocity of mass m₁ and let m₂ be at rest.
the masses undergo an elastic collision in one dimension.
To Find : derive the expression for the velocities of the two masses after the collision.
Solution:
mass m₁ , initial velocity u₁
mass m₂ , initial velocity 0 ( at rest )
Momentum = m₁u₁ + m₂(0) = m₁u₁
KE = (1/2)m₁u₁² + (1/2)m₂(0)² = (1/2)m₁u₁²
Let say
mass m₁ , Final velocity v₁
mass m₂ , Final velocity v₂
Momentum = m₁v₁ + m₂v₂
KE = (1/2)m₁v₁² + (1/2)m₂(v₂) ²
Using conservation of momentum
m₁v₁ + m₂v₂ = m₁u₁
=> v₂ = m₁(u₁ - v₁)/m₂
As collision is elastic hence KE is conserved
(1/2)m₁v₁² + (1/2)m₂(v₂) ² = (1/2)m₁u₁²
=> m₁v₁² + m₂(v₂) ² = m₁u₁²
Substituting v₂ = m₁(u₁ - v₁)/m₂
m₁v₁² + m₂(m₁(u₁ - v₁)/m₂) ² = m₁u₁²
=> m₁m₂v₁² + m₁²(u₁ - v₁) ² = m₁m₂u₁²
=> m₂v₁² + m₁(u₁ - v₁)(u₁ - v₁) = m₂u₁²
=> m₁(u₁ - v₁)(u₁ - v₁) = m₂(u₁² - v₁² )
=> m₁(u₁ - v₁)(u₁ - v₁) = m₂(u₁ + v₁ )(u₁ - v₁ )
=> m₁(u₁ - v₁) = m₂(u₁ + v₁ )
=> m₁ u₁ - m₁v₁ = m₂ u₁ + m₂ v₁
=> u₁ (m₁ -m₂) = v₁ (m₁ +m₂)
=> v₁ = u₁ (m₁ -m₂)/(m₁ +m₂)
v₂ = m₁(u₁ - v₁)/m₂
=> v₂ = m₁(u₁ - u₁ (m₁ -m₂)/(m₁ +m₂))/m₂
=> v₂ = m₁( 2m₂u₁)/m₂(m₁ +m₂)
=> v₂ = 2m₁u₁/(m₁ +m₂)
Learn More:
A moving body of mass m collides head on elastically with a ...
https://brainly.in/question/36012146
A pool ball moves at 2.1 m/s to the right (+x direction) and hits an ...
brainly.in/question/12044956
Given:
Consider a system of two masses m1 and m2. Let u1 be the initial velocity of mass m1 and let m2 be at rest. The masses undergo an elastic collision in one dimension.
To find:
Final velocities of each masses ?
Calculation:
We will use two tricks to solve this question easily !
- Conservation of Linear Momentum
- Coefficient of Restitution
Conservation of Linear Momentum:
According to Coefficient of Restitution:
__________________________________
Now, substituting value of v2 in 1st eq:
_______________________
Now, substituting v1 in 1st eq:
Hope It Helps.