Physics, asked by siddhantkhadgi, 10 months ago

consider a uniformly charged metallic spherical shell of radius r and charge q the coulombic force experienced by the upper half of the metallic spherical shell is


Answers

Answered by pp6609034
1

Answer:

A thin metallic spherical sphere of radius R carries a charge +Q on its surface. A point charge +2Q is placed at a point C .

Answered by Swati3101
0

Answer:

The coulombic force by the upper half of the metallic spherical shell is \bold{F_z=\frac{3Q^2}{64\pi\epsioln_0R^2} }

Explanation:

Now the electric field inside a uniformly charged sphere is

\vec{E}=\frac{1}{4\pi\epsilon _{0}}

So, force per unit volume is

\vec{F}=\rho\vec{E}=(\frac{Q}{\frac{4}{3}\piR^3 }) (\frac{Q}{\frac{4}{3}\pi\epsilon_0R^3})\vec{r}

and force in the z-direction on d\tau is

dF_z=\frac{3}{\epsilon_0} (\frac{Q}{4\pi R^3} )^2 rcos\theta

So, the total force on the upper half is

F_z=\frac{3Q^2}{64\pi\epsioln_0R^2}

Similar questions