Math, asked by raghav1146, 3 months ago

Consider ∆ACB, right - angled at C, in which AB = 29 Units, BC = 21 units and angle ABC = θ. Determine the values of –

(1) cos²θ + sin²θ
(2) cos²θ - sin²θ​

Answers

Answered by Anonymous
72

Given :

  • AB = 29 Units,
  • BC = 21 units,
  • ∠ABC = θ.

To Find :

  • Determine the values of –
  1. (1) cos²θ + sin²θ
  2. (2) cos²θ - sin²θ

Solution :

In ∆ACB, we have :

 { \rm{ \implies{AC =  \sqrt{AB^{2}   - BC^{2} }  =  \sqrt{(29)^{2} - (21) ^{2}}}} }

{ \rm{ \implies{ \sqrt{(29 - 21)(29 + 21)}  =  \sqrt{(8)(50)} }}}

{ \rm{ \implies{ \sqrt{400}  = 20 \: units}}}

{ \rm{ \implies{So{ \boxed{ \rm{ \blue{ \:  \sin θ  =  \frac{AC}{AB}  =  \frac{20}{29} \: , \:  \cos  θ =  \frac{BC}{AB}  =  \frac{21}{29}  }}} }}}}

{\rm{(1) \cos^{2} θ +  \sin ^{2} θ}}

\begin{gathered} \\ \rm \implies \left( \dfrac{20}{29} \right)^{2}  + \left( \dfrac{21}{29} \right)^{2} \\ \end{gathered}

{\sf{ \implies{ \frac{20^{2} + 21 ^{2}  }{29 ^{2}} =  \frac{400 + 441}{841}  = { \boxed{ \sf{ \red{{1}}}}}}}}

{\rm{(1) \cos^{2} θ -  \sin ^{2} θ}}

\begin{gathered} \\ \rm \implies \left( \dfrac{21}{29} \right)^{2}   -  \left( \dfrac{20}{29} \right)^{2} \\ \end{gathered}

 \implies{ \sf{ \frac{(21 + 20)(21 - 20)}{29 ^{2}  }  = { \boxed{ \sf{ \red{ \frac{41}{841} }}}}}}

_______________________________

Attachments:
Similar questions