Math, asked by Aggud7536, 2 months ago

Consider an algebraic system (G, *), where G is the set of all non-zero real numbers and * is a binary operation defined by

a*b=(a*b)/4

Show that (G, *) is an abelian group

Answers

Answered by pulakmath007
9

TO PROVE

The set G is the set of all non-zero real numbers forms an abelian group under the operation * defined by

\displaystyle \: \sf{ a*b = \frac{1}{4}ab \: \: \: \forall \: \: a, b \in G}

PROOF

1. CHECKING FOR CLOSURE PROPERTY

\displaystyle \: \sf{ Let \: \: a, b \in  G}

\implies \: \displaystyle \:\sf{ \frac{1}{4} ab \: \in G}

\implies \: \displaystyle \: \sf{ a* b \: \in G}

So * is closed

2. CHECKING FOR ASSOCIATIVE PROPERTY

\displaystyle \: \sf{ Let \: \: a, b ,c \: \in  G}

Then

\displaystyle \: \sf{ a*(b*c) = a* \bigg( \frac{1}{4} bc\bigg) \: } = \frac{1}{16} abc

\displaystyle \: \sf{ (a*b)*c = \bigg( \frac{1}{4} ab\bigg) *c\: } = \frac{1}{16} abc

So a * ( b * c ) = ( a * b ) * c

So * is associative

3. EXISTENCE OF IDENTITY ELEMENT

Let a ∈ G

Let e be the identity element

Then e*a= a*e= a

 \: \displaystyle \: \sf{ \frac{1}{4} ea \: = a \:}

\implies \: \displaystyle \: \sf{ e = 4 }

So 4 is the identity element

4. EXISTENCE OF INVERSE ELEMENT

Let a ∈ G

Let there exists b ∈ G such that

a*b= b*a= e

 \sf{ \:Now \: \: a*b= e\: } \: \: implies

\displaystyle \: \sf{ \frac{1}{4} ab\: = 4 \:}

 \implies \: \: \displaystyle \: \sf{ b\: = \frac{16}{a} \:}

 \displaystyle \: \sf{ \therefore \: \: \frac{16}{a} \: }\: is \: the \: inverse \: \: element \: of \: a\: \: under \: the \: operation \: *

So G is a group

CHECKING FOR COMMUTATIVE PROPERTY

Let a, b ∈ G

Now

 \displaystyle \: \sf{ a*b = \frac{1}{4}ab \: \: \: }

\displaystyle \: \sf{ b*a = \frac{1}{2}ba = \frac{1}{4}ab \: \: \: }

So a * b = b * a

So ( G , * ) is commutative group

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. show me the set G = { x+y√3:x,y=Q} is a group w.r.t addition

https://brainly.in/question/22729253

2. Show that the set Q+ of all positive rational numbers forms an abelian group under the operation * defined by

a*b= 1/2(...

https://brainly.in/question/21467351

Similar questions