Math, asked by Truebrainlian9899, 1 month ago

Consider an equilateral triangle with side 'x' . Drive a formula by using herons formula to calculate area . Use the formula and calculate area for an equilateral triangle with side 4cm​

Answers

Answered by ItzBrainlyLords
1

Solution

☞︎︎︎ Given :

  • Equilateral triangle

(All sides are equal)

  • Side = x

 \large \sf  \underline{ \underline{\bold{ \star \:  \: finding \:  \: area : }}} \\

➪ S = semi - Perimeter

➪ a , b , c = 3 sides

 \large \rm \underline{ \underline{{ \star \:  \: formula: }}} \\

 \\  \large \longrightarrow \:  \underline{ \boxed{\tt{s =  \frac{a + b + c}{2} }}} \\  \\

  • Since , All sides = x

 \\  \large \sf  : \implies \: s =  \dfrac{x + x + x}{2}  \\  \\  \large \sf \therefore \: s =  \frac{3x}{2}  \\

 \large \tt \star \:   \underline{ \brack{\bold{ \large \: herons \:  \:  \: formula \: }}}

Area = a

 \\ \mapsto\large \sf \:a =  \sqrt{s(s - a)(s - b)(s - c)}  \\   \\ \\  \tt \implies \: a =  \sqrt{ \frac{3x}{2}  \left(  \frac{3x}{2}  - x\right) \left(  \frac{3x}{2}  - x\right) \left(  \frac{3x}{2}  - x\right)}   \\ \\  \tt \implies \: a =  \sqrt{ \frac{3x}{2}  \left(  \frac{3x - 2x}{2}  \right) \left(  \frac{3x - 2x}{2} \right) \left(  \frac{3x - 2x}{2} \right)}   \\ \\  \tt \implies \: a =  \sqrt{ \frac{3x}{2}  \left(  \frac{x}{2} \right) \left(  \frac{x}{2} \right) \left(  \frac{x}{2}  \right)}  \\  \\   \tt \implies \: a =  \sqrt{ \frac{3 {x}^{4} }{16} }  \\  \\  \tt \implies \: a =  { \frac{ \sqrt{ 3 } \sqrt{ {x}^{4} }}{ \sqrt{ 16} } } \\

 \large \sf \leadsto \: \underline{  \boxed{ \sf \: a =  \dfrac{ {x}^{2}  \sqrt{3} }{4} }} \\

☆ Hence, Formula Drived

Applying Formula for :

  • equilateral triangle of side 4cm

 \large \sf  \implies{{ \sf \: a =  \dfrac{ {x}^{2}  \sqrt{3} }{4} }} \\  \\ \large \sf  \implies{{ \sf \: a =  \dfrac{ {4}^{2}  \sqrt{3} }{4} }} \\  \\ \large \sf  \implies{{ \sf \: a =  \dfrac{ {16}^{}  \sqrt{3} }{4} }} \\  \\ \large \sf  \implies{{ \sf \: a =  \dfrac{ { \cancel{16} \:  \: 4}^{}  \sqrt{3} }{ \cancel4} }} \\  \\ \large \sf  \implies{{ \sf \: a =  { {4}^{}  \sqrt{3} }{} }} \\  \\  \large \implies \sf \: a = 4 \times 1.73 \: (approx) \\  \\   \large \sf \: \therefore \:  \:  \underline{ \underline{area = 6.92c {m}^{2} }} \\  \\

Area = 6.92cm² (approx)

☞︎︎︎ Check :

  • Side = 4

 \\  \large \longrightarrow \:  \underline{ \boxed{\tt{s =  \frac{a + b + c}{2} }}} \\  \\

 \\   \sf  : \implies \: s =  \dfrac{4 + 4 + 4}{2}  \\  \\  \sf  : \implies \: s =  \dfrac{12}{2}  \\  \\  \sf \therefore \: \underline{ s =  6cm}  \\

  • Applying Herons Formula

 \\ \mapsto\tt \:a =  \sqrt{s(s - a)(s - b)(s - c)}  \\   \\ \implies \tt \:a =  \sqrt{6(6 - 4)(6 - 4)(6 -  4)}  \\   \\ \implies \tt \:a =  \sqrt{6 \times 2 \times  \bar2 \times  \bar2}  \\   \\ \implies \tt \:a = 2 \sqrt{3 \times  \bar 2 \times  \bar2}  \\   \\\implies \tt \:a = 2  \times 2\sqrt{3 }  \\   \\\implies \tt \:a = 4 \times 1.73  \\   \\  \sf \underline{\boxed{ \sf\therefore \:  \: area = 6.29 {cm}^{2} }} \\

Similar questions