consider an LTI system y(n)-1.5 y(n-1)+0.5y(n-2)=x(n) find the natural response of this system
Answers
Given:
LTI system: y(n)-1.5y(n-1)+0.5y(n-2)=x(n)
To Find:
Natural Response
Solution:
The homogeneous equation ⇒
y(n)-1.5y(n-1)+0.5y(n-2)=0
let y(n)=λⁿ
The equation becomes,
⇒λⁿ - 1.5λⁿ⁻¹ + 0.5λⁿ⁻² = 0
⇒λⁿ⁻² (λ² - 1.5λ +0.5) = 0 [∵ λⁿ⁻² ≠ 0]
⇒λ² - 1.5λ - 0.5=0
⇒λ²- λ- 0.5λ +0.5=0
⇒λ(λ-1) -0.5(λ-1)=0
⇒λⁿ=0.5,1
Hence,
y(n)=C₁(0.5)ⁿ+C₂(1)ⁿ
Putting n=0 and n=1 in y(n), we get:
y(0)=C₁+C₂ ......(1)
y(1)=0.5C₁+C2 .......(2)
Since, no initial conditions are given, we assume:
y(0)=0 and y(1)=0
Putting the values of y(0) and y(1) in equations (1) and (2)
For n=0
y(0)=1.5y(-1)+0.5y(-2)=0
⇒y(0)-1.5+0.5=0
⇒C₁+C₂=0.5 ........(3)
For n=1
y(1)-1.5y(0)+0.5y(-1)=0
⇒y(1)-1.5(0.5)+0.5(1)=0
⇒0.5C₁+C₂=0.25....... (4)
Now, (3)-(4) we get:
0.5C₁=0.25
C₁=0.5
C₂=0
Hence,
y(n)= (0.5)ⁿ⁺¹ , n≥0
=(0,5)ⁿ⁺¹u(n) is the required natural response