Math, asked by Anonymous, 9 months ago

Consider right triangle ABC, right angled at B. If AC = 17 units and BC = 8 units determine all the trigonometric ratios of angle C.


Please answer my question​

Answers

Answered by Anonymous
18

 \huge\rm { ☆_!! Question !_!  ☆}

Consider right triangle ABC, right angled at B. If AC = 17 units and BC = 8 units determine all the trigonometric ratios of angle C.

 \huge\rm { ☆_!! Solution !_!  ☆}

We have-

  •  \rm { AC ( Hypotenuse) = 17 units }
  •  \rm { BC ( Base ) = 8units }

Applying pythagoras property-

 \rm\blue { {(P)}^{2} + {(B)}^{2} = {(H)}^{2} }

 \rm\red { {(AB)}^{2} + {(BC)}^{2} = {(AC)}^{2} }

 \rm { \longrightarrow {(AC)}^{2} - {(BC)}^{2} = {(AB)}^{2} }

 \rm { \longrightarrow {(AB)}^{2}  = {(17)}^{2} - {(8)}^{2}  }

 \rm { \longrightarrow {(AB)}^{2}  = 289 - 64}

 \rm { \longrightarrow {(AB)}^{2}  = 225}

 \rm { \longrightarrow AB  = \sqrt{225}  = 15units }

Now , we have -

  •  \rm { AB ( Perpendicular ) = 15 units }
  •  \rm { BC ( Base ) = 8 units }
  •  \rm { AC ( Hypotenuse ) = 17 units }

 \:

 \sf { \therefore sin \: C = \dfrac{perpendicular}{hypotenuse}}

 \sf { \implies sin \: C = \dfrac{AB}{AC} = \dfrac { 15}{17} }

____

 \sf { \therefore cos \: C = \dfrac{base}{hypotenuse}}

 \sf { \implies cos \:  C = \dfrac{BC}{AC} = \dfrac { 8}{17} }

____

 \sf { \therefore tan \: C = \dfrac{perpendicular}{base}}

 \sf { \implies tan \:  C = \dfrac{AB}{BC} = \dfrac { 15}{8} }

____

 \sf { \therefore cot \: C = \dfrac{base}{perpendicular}}

 \sf { \implies cot \: C = \dfrac{BC}{AB} = \dfrac { 8}{15} }

____

 \sf { \therefore sec \: C = \dfrac{Hypotenuse}{base}}

 \sf { \implies sec \: C = \dfrac{AC}{BC} = \dfrac { 17}{8} }

_____

 \sf { \therefore cosec \: C = \dfrac{Hypotenuse}{perpendicular}}

 \sf { \implies cosec \: C = \dfrac{AC}{AB} = \dfrac { 17}{15} }

______________________________

Attachments:
Answered by Elekstrike
12

Remember:-

  • sin(∅) = (Opposite Side)/(Hypotenuse)
  • cos(∅) = (Adjacent Side)/(Hypotenuse)
  • tan(∅) = (Opposite Side)/(Adjacent Side)
  • cosec(∅) = 1/sin
  • sec(∅) = 1/cos
  • cot(∅) = 1/tan

Answer:-

Finding the length of AC:- (Hypotenuse)

We know,

(Hypotenuse)² = (Base)² + (Height)²

[Pythagoras Theorem]

Thus,

AC² = BC² + AB²

→ AB² = AC² - BC²

→ AB² = (AC + BC)(AC - BC)

→ AB² = (17 + 8)(17 - 8)

→ AB² = √[(25)(9)]

→ AB² = 5 • 3

AB² = 15 units

Trigonometric Ratios:- (of C)

Adjacent Side = BC

Hypotenuse = AC

Opposite side = AB

  • sin C = AB/AC = 15/17
  • cos C = BC/AC = 8/17
  • tan C = AB/BC = 15/8
  • cosec C = AC/AB = 17/15
  • sec C = AC/BC = 17/8
  • cot C = BC/AB = 8/15

Note: Refer to the diagram above by @JiangXue.

Similar questions