Math, asked by Mister360, 1 month ago

Consider right triangle ABC, right angled at B. If AC = 17 units and BC = 8 units determine all the trigonometric ratios of angle C.

Answers

Answered by llItzDishantll
6

Given:-

  • AC (Hyp.) ⇒ 17 units
  • BC (Base) ⇒ 8 units

Formula Used:-

Pythagoras Theorem:- (Hyp.)² ⇒ (Base)² + (Perp.)²

→ (AC)² ⇒ (BC)² + (AB)²

→ (AC)² - (BC)² ⇒ (AB)²

→ (17)² - (8)² ⇒ (AB)²

→ 289 - 64 ⇒ (AB)²

→ 225 ⇒ (AB)²

AB ⇒ \sqrt{225}

AB ⇒ 15 Units ⇒ (Perp.)

  • Sin C ⇒ \frac{Perpendicular}{Hypotenuse} \frac{AB}{AC} \frac{15}{17}
  • Cos C ⇒ \frac{Base}{Hypotenuse} \frac{BC}{AC} \frac{8}{17}
  • Tan C ⇒ \frac{Perpendicular}{Base} \frac{AB}{BC} \frac{15}{8}
  • Cot C ⇒ \frac{Base}{Perpendicular} \frac{BC}{AB} \frac{8}{15}
  • Sec C ⇒ \frac{Hypotenuse}{Base} \frac{AC}{BC} \frac{17}{8}
  • Cosec C ⇒ \frac{Hypotenuse}{Perpendicular} \frac{AC}{AB} \frac{17}{15}

Thank

You

_______________________________

Attachments:
Answered by ItzMeMukku
20

\huge\rm { ☆_!! Solution !_! ☆}

We have-

\rm { AC ( Hypotenuse) = 17 units }

\rm { BC ( Base ) = 8units }

Applying pythagoras property-

\rm\blue { {(P)}^{2} + {(B)}^{2} = {(H)}^{2} }

\rm\red { {(AB)}^{2} + {(BC)}^{2} = {(AC)}^{2} }

\rm { \longrightarrow {(AC)}^{2} - {(BC)}^{2} = {(AB)}^{2} }

\rm { \longrightarrow {(AB)}^{2} = {(17)}^{2} - {(8)}^{2} }

\rm { \longrightarrow {(AB)}^{2} = 289 - 64}

\rm { \longrightarrow {(AB)}^{2} = 225}

\rm { \longrightarrow AB = \sqrt{225} = 15units }

Now , we have -

\rm { AB ( Perpendicular ) = 15 units }

\rm { BC ( Base ) = 8 units }

\rm { AC ( Hypotenuse ) = 17 units }

\sf { \therefore sin \: C = \dfrac{perpendicular}{hypotenuse}}

\sf { \implies sin \: C = \dfrac{AB}{AC} = \dfrac { 15}{17} }

____

\sf { \therefore cos \: C = \dfrac{base}{hypotenuse}}

\sf { \implies cos \: C = \dfrac{BC}{AC} = \dfrac { 8}{17} }

____

\sf { \therefore tan \: C = \dfrac{perpendicular}{base}}

\sf { \implies tan \: C = \dfrac{AB}{BC} = \dfrac { 15}{8} }

____

\sf { \therefore cot \: C = \dfrac{base}{perpendicular}}

\sf { \implies cot \: C = \dfrac{BC}{AB} = \dfrac { 8}{15} }

____

\sf { \therefore sec \: C = \dfrac{Hypotenuse}{base}}

\sf { \implies sec \: C = \dfrac{AC}{BC} = \dfrac { 17}{8} }

_____

\sf { \therefore cosec \: C = \dfrac{Hypotenuse}{perpendicular}}

\sf { \implies cosec \: C = \dfrac{AC}{AB} = \dfrac { 17}{15} }

______________________________

Thankyou :)

Similar questions